/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "BufferArg.h" #include #include "paddle/math/MemoryHandle.h" namespace paddle { TEST(BufferTest, BufferArg) { TensorShape shape({8, 10}); CpuMemoryHandle memory(shape.getElements() * sizeOfValuType(VALUE_TYPE_FLOAT)); BufferArg buffer(memory.getBuf(), VALUE_TYPE_FLOAT, shape); EXPECT_EQ(buffer.data(), memory.getBuf()); } TEST(BufferTest, SequenceIdArg) { TensorShape shape({10}); CpuMemoryHandle memory(shape.getElements() * sizeOfValuType(VALUE_TYPE_INT32)); SequenceIdArg buffer(memory.getBuf(), shape); EXPECT_EQ(buffer.data(), memory.getBuf()); EXPECT_EQ(buffer.numSeqs(), 9); } TEST(BufferTest, asArgument) { MatrixPtr matrix = Matrix::create(100, 200); VectorPtr vector = Vector::create(100, false); CpuSparseMatrix sparse(200, 300, 50); // prepare arguments BufferArgs argments; argments.addArg(*matrix); argments.addArg(*vector); argments.addArg(sparse); // function auto function = [=](const BufferArgs& inputs) { EXPECT_EQ(inputs.size(), 3); // check inputs[0] EXPECT_EQ(inputs[0].shape().ndims(), 2); EXPECT_EQ(inputs[0].shape()[0], 100); EXPECT_EQ(inputs[0].shape()[1], 200); EXPECT_EQ(inputs[0].data(), matrix->getData()); EXPECT_EQ(inputs[0].matrix().getHeight(), matrix->getHeight()); EXPECT_EQ(inputs[0].matrix().getWidth(), matrix->getWidth()); EXPECT_EQ(inputs[0].matrix().getData(), matrix->getData()); // check inputs[1] EXPECT_EQ(inputs[1].shape().ndims(), 1); EXPECT_EQ(inputs[1].shape()[0], 100); EXPECT_EQ(inputs[1].data(), vector->getData()); CpuVector inVector = inputs[1].vector(); EXPECT_EQ(inVector.getSize(), vector->getSize()); EXPECT_EQ(inVector.getData(), vector->getData()); // check inputs[2] EXPECT_EQ(inputs[2].shape().ndims(), 2); EXPECT_EQ(inputs[2].shape()[0], 200); EXPECT_EQ(inputs[2].shape()[1], 300); EXPECT_EQ(inputs[2].data(), sparse.getData()); // CHECK_EQ(inputs[2].sparse().nnz(), 50); // CHECK_EQ(inputs[2].sparse().dataFormat(), SPARSE_CSR_FORMAT); // CHECK_EQ(inputs[2].sparse().dataType(), SPARSE_FLOAT_VALUE); EXPECT_EQ(inputs[2].sparse().getRowBuf(), sparse.getRows()); EXPECT_EQ(inputs[2].sparse().getColBuf(), sparse.getCols()); }; // call function function(argments); } template void FunctionApi(typename Tensor::Matrix& output, const typename Tensor::Matrix& input); template <> void FunctionApi(CpuMatrix& output, const CpuMatrix& input) { EXPECT_EQ(output.getHeight(), 100); EXPECT_EQ(output.getWidth(), 200); } template <> void FunctionApi(GpuMatrix& output, const GpuMatrix& input) { EXPECT_EQ(output.getHeight(), 10); EXPECT_EQ(output.getWidth(), 20); } template void Function(const BufferArgs& arguments) { auto input = arguments[0].matrix(); auto output = arguments[1].matrix(); FunctionApi(output, input); } TEST(BufferTest, Function) { CpuMatrix cpuInput = CpuMatrix(100, 200); CpuMatrix cpuOutput = CpuMatrix(100, 200); BufferArgs cpuArgments; cpuArgments.addArg(cpuInput); cpuArgments.addArg(cpuOutput); Function(cpuArgments); GpuMatrix gpuInput = GpuMatrix(10, 20); GpuMatrix gpuOutput = GpuMatrix(10, 20); BufferArgs gpuArgments; gpuArgments.addArg(gpuInput); gpuArgments.addArg(gpuOutput); Function(gpuArgments); } } // namespace paddle