unary.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = []

from paddle import _C_ops, in_dynamic_mode


def relu(x, name=None):
    """
    sparse relu activation, requiring x to be a sparse coo or sparse csr tensor.

    .. math::

        out = max(x, 0)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard

            with _test_eager_guard():
                dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
                sparse_x = dense_x.to_sparse_coo(1)
                out = paddle.sparse.functional.relu(sparse_x) 
    """

    assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode"

    if x.is_sparse_coo():
        return _C_ops.final_state_sparse_coo_relu(x)
    elif x.is_sparse_csr():
        return _C_ops.final_state_sparse_csr_relu(x)
    else:
        raise ValueError(
            "Currently, sparse.relu only support the input of SparseCooTensor or SparseCsrTensor"
        )


def tanh(x, name=None):
    """
    sparse tanh activation, requiring x to be a sparse coo or sparse csr tensor.

    .. math::

        out = tanh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard

            with _test_eager_guard():
                dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
                sparse_x = dense_x.to_sparse_coo(1)
                out = paddle.sparse.tanh(sparse_x)
    """

    assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode"

    if x.is_sparse_coo():
        return _C_ops.final_state_sparse_coo_tanh(x)
    elif x.is_sparse_csr():
        return _C_ops.final_state_sparse_csr_tanh(x)
    else:
        raise ValueError(
            "Currently, sparse.tanh only support the input of SparseCooTensor or SparseCsrTensor"
        )


def sqrt(x, name=None):
    """
    Calculate square root of x, requiring x to be a sparse coo or sparse csr tensor.

    .. math::

        out = sqrt(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard

            with _test_eager_guard():
                dense_x = paddle.to_tensor([4, 0, 1], dtype='float32')
                sparse_x = dense_x.to_sparse_coo(1)
                out = paddle.sparse.sqrt(sparse_x)
    """

    assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode"

    if x.is_sparse_coo():
        return _C_ops.final_state_sparse_coo_sqrt(x)
    elif x.is_sparse_csr():
        return _C_ops.final_state_sparse_csr_sqrt(x)
    else:
        raise ValueError(
            "Currently, sparse.sqrt only support the input of SparseCooTensor or SparseCsrTensor"
        )


def sin(x, name=None):
    """
    Calculate sin of x, requiring x to be a sparse coo or sparse csr tensor.

    .. math::

        out = sin(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.framework import _test_eager_guard

            with _test_eager_guard():
                dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
                sparse_x = dense_x.to_sparse_coo(1)
                out = paddle.sparse.sin(sparse_x)
    """

    assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode"

    if x.is_sparse_coo():
        return _C_ops.final_state_sparse_coo_sin(x)
    elif x.is_sparse_csr():
        return _C_ops.final_state_sparse_csr_sin(x)
    else:
        raise ValueError(
            "Currently, sparse.sin only support the input of SparseCooTensor or SparseCsrTensor"
        )