# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [] from paddle import _C_ops, in_dynamic_mode def relu(x, name=None): """ sparse relu activation, requiring x to be a sparse coo or sparse csr tensor. .. math:: out = max(x, 0) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard with _test_eager_guard(): dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.functional.relu(sparse_x) """ assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode" if x.is_sparse_coo(): return _C_ops.final_state_sparse_coo_relu(x) elif x.is_sparse_csr(): return _C_ops.final_state_sparse_csr_relu(x) else: raise ValueError( "Currently, sparse.relu only support the input of SparseCooTensor or SparseCsrTensor" ) def tanh(x, name=None): """ sparse tanh activation, requiring x to be a sparse coo or sparse csr tensor. .. math:: out = tanh(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard with _test_eager_guard(): dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.tanh(sparse_x) """ assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode" if x.is_sparse_coo(): return _C_ops.final_state_sparse_coo_tanh(x) elif x.is_sparse_csr(): return _C_ops.final_state_sparse_csr_tanh(x) else: raise ValueError( "Currently, sparse.tanh only support the input of SparseCooTensor or SparseCsrTensor" ) def sqrt(x, name=None): """ Calculate square root of x, requiring x to be a sparse coo or sparse csr tensor. .. math:: out = sqrt(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard with _test_eager_guard(): dense_x = paddle.to_tensor([4, 0, 1], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.sqrt(sparse_x) """ assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode" if x.is_sparse_coo(): return _C_ops.final_state_sparse_coo_sqrt(x) elif x.is_sparse_csr(): return _C_ops.final_state_sparse_csr_sqrt(x) else: raise ValueError( "Currently, sparse.sqrt only support the input of SparseCooTensor or SparseCsrTensor" ) def sin(x, name=None): """ Calculate sin of x, requiring x to be a sparse coo or sparse csr tensor. .. math:: out = sin(x) Parameters: x (Tensor): The input Sparse Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Sparse Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard with _test_eager_guard(): dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32') sparse_x = dense_x.to_sparse_coo(1) out = paddle.sparse.sin(sparse_x) """ assert in_dynamic_mode(), "Currently, Sparse API only support dynamic mode" if x.is_sparse_coo(): return _C_ops.final_state_sparse_coo_sin(x) elif x.is_sparse_csr(): return _C_ops.final_state_sparse_csr_sin(x) else: raise ValueError( "Currently, sparse.sin only support the input of SparseCooTensor or SparseCsrTensor" )