dropout_op.cc 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/dropout_op.h"
S
sneaxiy 已提交
16
#include <memory>
P
phlrain 已提交
17
#include <string>
X
Xinghai Sun 已提交
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

28
  void InferShape(framework::InferShapeContext* ctx) const override {
29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Dropout");
Q
Qiao Longfei 已提交
30 31 32

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", x_dims);
33
    if (ctx->Attrs().Get<bool>("is_test") == false) {
Q
Qiao Longfei 已提交
34
      ctx->SetOutputDim("Mask", x_dims);
35
    }
Q
Qiao Longfei 已提交
36
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
37
  }
M
mapingshuo 已提交
38 39 40 41 42 43 44

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
X
Xinghai Sun 已提交
45 46 47 48
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
49
  void Make() override {
X
Xinghai Sun 已提交
50
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
51 52 53 54
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
        .AsDispensable();
X
Xinghai Sun 已提交
55
    AddOutput("Out", "The output of dropout op.");
56
    AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
X
Xinghai Sun 已提交
57

K
Kexin Zhao 已提交
58
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
59 60
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
61 62 63
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_prob' must be between 0.0 and 1.0."));
C
chengduoZH 已提交
64
        });
65 66 67 68
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
69 70 71 72 73 74 75
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(false);
K
Kexin Zhao 已提交
76
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
P
phlrain 已提交
77 78 79 80 81 82 83 84 85
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
86
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
87 88 89 90 91 92 93 94
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
95 96 97 98 99
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
P
phlrain 已提交
100
        });
K
Kexin Zhao 已提交
101

102 103 104
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
105
Dropout refers to randomly dropping out units in a nerual network. It is a
106 107
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
108
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
109 110
are set equal to their corresponding inputs.

111
)DOC");
X
Xinghai Sun 已提交
112 113 114 115 116 117 118
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

119
  void InferShape(framework::InferShapeContext* ctx) const override {
120 121 122
    OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "DropoutGrad");
Q
Qiao Longfei 已提交
123 124

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
125 126 127 128 129

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
130 131 132 133

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
134 135 136
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
137
  }
S
sneaxiy 已提交
138 139
};

H
hong 已提交
140 141
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
142
 public:
H
hong 已提交
143
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
144 145

 protected:
146
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
147
    op->SetType("dropout_grad");
H
hong 已提交
148 149 150 151
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
X
Xinghai Sun 已提交
152 153 154 155 156 157 158
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
159
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
H
hong 已提交
160 161
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>);
162
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
163
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
164 165
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, double>);
X
Xinghai Sun 已提交
166
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
167
    dropout_grad,
P
phlrain 已提交
168 169
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, double>);