dropout_op.cc 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/dropout_op.h"
S
sneaxiy 已提交
16
#include <memory>
P
phlrain 已提交
17
#include <string>
X
Xinghai Sun 已提交
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

28
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", x_dims);
33
    if (ctx->Attrs().Get<bool>("is_test") == false) {
Q
Qiao Longfei 已提交
34
      ctx->SetOutputDim("Mask", x_dims);
35
    }
Q
Qiao Longfei 已提交
36
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
37
  }
M
mapingshuo 已提交
38 39 40 41 42 43 44

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
X
Xinghai Sun 已提交
45 46 47 48
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
49
  void Make() override {
X
Xinghai Sun 已提交
50
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
51 52 53 54
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
        .AsDispensable();
X
Xinghai Sun 已提交
55
    AddOutput("Out", "The output of dropout op.");
56
    AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
X
Xinghai Sun 已提交
57

K
Kexin Zhao 已提交
58
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
59 60
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
C
refine  
chengduoZH 已提交
61 62
          PADDLE_ENFORCE(drop_p >= 0.0f && drop_p <= 1.0f,
                         "'dropout_prob' must be between 0.0 and 1.0.");
C
chengduoZH 已提交
63
        });
64 65 66 67
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
68 69 70 71 72 73 74
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(false);
K
Kexin Zhao 已提交
75
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
P
phlrain 已提交
76 77 78 79 80 81 82 83 84
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
85
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
          PADDLE_ENFORCE(
              type == "downgrade_in_infer" || type == "upscale_in_train",
              "dropout_implementation can only be downgrade_in_infer or "
              "upscale_in_train");
        });
K
Kexin Zhao 已提交
99

100 101 102
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
103
Dropout refers to randomly dropping out units in a nerual network. It is a
104 105
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
106
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
107 108
are set equal to their corresponding inputs.

109
)DOC");
X
Xinghai Sun 已提交
110 111 112 113 114 115 116
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

117
  void InferShape(framework::InferShapeContext* ctx) const override {
118 119
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
                      "GradOp is only callable when is_test is false");
Q
Qiao Longfei 已提交
120 121 122 123 124 125

    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
126 127 128 129 130

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
131 132 133 134

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
135 136 137
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
138
  }
S
sneaxiy 已提交
139 140
};

H
hong 已提交
141 142
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
143
 public:
H
hong 已提交
144
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
145 146

 protected:
H
hong 已提交
147 148
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
149
    op->SetType("dropout_grad");
H
hong 已提交
150 151 152 153
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
154
    return op;
X
Xinghai Sun 已提交
155 156 157 158 159 160 161
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
162
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
H
hong 已提交
163 164
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>);
165
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
166
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
167 168
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, double>);
X
Xinghai Sun 已提交
169
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
170
    dropout_grad,
P
phlrain 已提交
171 172
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, double>);