fc_mkldnn_op.cc 24.1 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace framework {
class LoDTensor;
class Tensor;
}  // namespace framework
namespace platform {
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle
M
mozga-intel 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34 35 36 37 38 39 40 41 42 43 44 45
using framework::DataLayout;
using framework::Tensor;
using framework::LoDTensor;
using framework::DDim;
using framework::ExecutionContext;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
using mkldnn::memory;
using mkldnn::inner_product_forward;
using mkldnn::primitive;
using mkldnn::stream;
using mkldnn::prop_kind;
M
mozga-intel 已提交
46

M
Michał Gallus 已提交
47
template <typename T_in, typename T_w, typename T_out>
48
class FCPrimitiveFactory {
M
mozga-intel 已提交
49
 public:
50 51
  explicit FCPrimitiveFactory(const mkldnn::engine& engine) : engine_(engine) {}

A
Adam 已提交
52 53
  void ExecuteFcPrimitive(const LoDTensor* input, const Tensor* weights,
                          const Tensor* bias, LoDTensor* output,
54
                          const MKLDNNDeviceContext& dev_ctx,
A
Adam 已提交
55
                          const ExecutionContext& ctx) {
56
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
57 58
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
59 60
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
61 62
      this->Execute();
      return;
63
    }  // Otherwise, create a new one.
M
mozga-intel 已提交
64

65
    auto in_col_dims = ctx.Attr<int>("in_num_col_dims");
T
tianshuo78520a 已提交
66 67 68 69 70 71
    PADDLE_ENFORCE_LE(
        in_col_dims, 2,
        platform::errors::Unimplemented(
            "DNNL FC doesn't support in_num_col_dims parameter to "
            "be higher than "
            "2."));
72 73 74 75 76 77 78 79 80 81 82 83 84
    if (in_col_dims == 2) {
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 3,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "3 dim input is provided."));
      PADDLE_ENFORCE_EQ(
          input->format(), MKLDNNMemoryFormat::ncw,
          platform::errors::Unimplemented(
              "DNNL FC only supports in_num_col_dims equal to 2 when "
              "input format is equal to ncw."));
    }

85 86
    weights_ = CreateWeightsMemory(weights);

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    // Since MKL-DNN has a lot of limitations on what the input/weights/output
    // dimensions should be, to simplify the code, the creation of primitive
    // descriptor has been divided into separate cases, based on the number
    // of input dimensions.
    size_t input_dim_num = input->dims().size();
    boost::optional<mkldnn::inner_product_forward::primitive_desc> fc_prim_desc;
    memory::desc usr_weights_desc = {};
    switch (input_dim_num) {
      case 2:
        fc_prim_desc =
            Create2DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create2DUserWeightsDesc();
        break;
      case 3:
        fc_prim_desc =
            Create3DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create3DUserWeightsDesc(weights);
        break;
      case 4:
        fc_prim_desc =
            Create4DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create4DUserWeightsDesc(input, weights);
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "DNNL FC doesn't support input dims different than 2, 3, 4."));
        break;
114
    }
115 116 117 118
    input_ = CreateMemory<T_in>(fc_prim_desc->src_desc(), input);
    // Update weights format inside of its memory
    weights_ = Reorder(usr_weights_desc, usr_weights_desc,
                       weights_->get_data_handle());
119

120 121 122
    // Quantize weights and reorder to format chosen by FC primitive descriptor.
    QuantizeWeights(ctx, fc_prim_desc->weights_desc());

123
    bias_ = CreateMemoryToBeCached<float>(fc_prim_desc->bias_desc(), bias);
124 125
    // If int8 is desired, quantize bias into 32-bit signed int
    QuantizeBias(*fc_prim_desc, ctx);
M
mozga-intel 已提交
126

127 128 129
    // Store weights and bias in the mkldnn cache
    CacheWeightsAndBias(dev_ctx, ctx);

130 131 132 133 134 135
    // Based on format determined by inner_product, create output in desired
    // memory format
    output_ = CreateDstMemory(*fc_prim_desc, ctx, output);

    // Return MKL-DNN primitive ready to be fed into pipeline and executed
    fc_ = inner_product_forward(*fc_prim_desc);
A
Adam 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    this->Execute();
  }

  void Execute() {
    mkldnn::stream astream(engine_);
    if (bias_) {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_BIAS, *bias_},
                             {MKLDNN_ARG_DST, *output_}});
    } else {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_DST, *output_}});
    }
    astream.wait();
M
mozga-intel 已提交
152 153
  }

154
 private:
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  // DNNL always returns 2-dimensional data block as a result of computing
  // inner product. Hence the format 'nc' is always set for its output
  // primitive. Therefore, function SetOutputFormat is needed to choose
  // an appropriate format based on the number of input dimensions and
  // format of an input tensor.
  void SetOutputFormat(MKLDNNMemoryFormat in_format, Tensor* out) {
    int dim_num = out->dims().size();
    // In case of 2 dims, we set the only possible format, nc
    if (dim_num == 2) {
      out->set_format(MKLDNNMemoryFormat::nc);
      // In case of 3 dims, we generate a format that is based on number
      // of output dims and the layout of input format (nchw or nhwc).
    } else if (dim_num == 3) {
      if (in_format == MKLDNNMemoryFormat::nwc ||
          in_format == MKLDNNMemoryFormat::nhwc) {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nhwc));
      } else {
        out->set_format(
            platform::MKLDNNFormatForSize(dim_num, MKLDNNMemoryFormat::nchw));
      }
      // In any other case we overwrite the output format with the input one.
    } else {
      out->set_format(in_format);
    }
  }

182 183
  void UpdateDataPointers(const ExecutionContext& ctx, Tensor* out,
                          const Tensor* in) {
M
Michał Gallus 已提交
184 185 186 187 188
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
189
    if (out->format() == MKLDNNMemoryFormat::undef) {
190
      SetOutputFormat(in->format(), out);
191
    }
M
mozga-intel 已提交
192 193
  }

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  mkldnn::inner_product_forward::primitive_desc Create2DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    auto weight_dims = Get2DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get2DWeightDimsForDNNL(const Tensor* weights) {
    auto dims = framework::vectorize(weights->dims());
    std::swap(dims[0], dims[1]);  // swap input dim with output dim
    return dims;
  }

  memory::desc Create2DUserWeightsDesc() { return weights_->get_desc(); }

  mkldnn::inner_product_forward::primitive_desc Create3DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto input_dims = framework::vectorize(input->dims());
219 220
    std::vector<int64_t> new_input_dims = {input_dims[0] * input_dims[1],
                                           input_dims[2], 1};
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    auto src_desc = CreateMemDescriptor<T_in>(new_input_dims, input->format());

    auto weight_dims = Get3DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);

    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);

    auto dst_dims = {input_dims[0] * input_dims[1], weight_dims[0]};
    auto dst_desc =
        CreateMemDescriptor<T_out>(dst_dims, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get3DWeightDimsForDNNL(const Tensor* weights) {
    auto paddle_w_dims = framework::vectorize(weights->dims());
238
    return {paddle_w_dims[1], paddle_w_dims[0], 1};
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  }

  memory::desc Create3DUserWeightsDesc(const Tensor* weights) {
    auto dims = Get3DWeightDimsForDNNL(weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oiw);
  }

  mkldnn::inner_product_forward::primitive_desc Create4DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product primitive, transpose the weights to be in
    // row-major format
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    auto weights_desc = CreateMemDescriptor<T_w>(dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get4DWeightDimsForDNNL(const LoDTensor* input,
                                              const Tensor* weights) {
    auto old_w_dims = framework::vectorize(weights->dims());
    auto old_in_dims = framework::vectorize(input->dims());
    auto dims = {old_w_dims[1], old_in_dims[1], old_in_dims[2], old_in_dims[3]};
    return dims;
  }

  memory::desc Create4DUserWeightsDesc(const LoDTensor* input,
                                       const Tensor* weights) {
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
M
mozga-intel 已提交
273 274
  }

M
Michał Gallus 已提交
275
  // Convert data from one data format to another
276 277 278
  std::shared_ptr<mkldnn::memory> Reorder(const memory::desc& src_desc,
                                          const memory::desc& dst_desc,
                                          void* src_data) {
A
Adam 已提交
279
    auto src_mem = memory(src_desc, engine_, src_data);
280
    auto dst_mem = std::make_shared<memory>(dst_desc, engine_);
M
mozga-intel 已提交
281

282
    auto reorder = mkldnn::reorder(src_mem, *dst_mem);
A
Adam 已提交
283
    mkldnn::stream astream(engine_);
284
    reorder.execute(astream, src_mem, *dst_mem);
A
Adam 已提交
285
    astream.wait();
M
mozga-intel 已提交
286

287
    return dst_mem;
M
mozga-intel 已提交
288 289
  }

M
Michał Gallus 已提交
290 291
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
292 293 294 295
  std::shared_ptr<mkldnn::memory> ReorderWithScale(
      const std::shared_ptr<memory> src_mem, const memory::desc& dst_md,
      const std::vector<float>& scale_data) {
    auto dst_mem = std::make_shared<mkldnn::memory>(dst_md, engine_);
M
Michał Gallus 已提交
296 297 298 299 300 301 302 303 304
    mkldnn::primitive_attr attributes;
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
305
    auto reorder = mkldnn::reorder(*src_mem, *dst_mem, attributes);
M
Michał Gallus 已提交
306

A
Adam 已提交
307 308
    mkldnn::stream astream(engine_);
    reorder.execute(astream,
309
                    {{MKLDNN_ARG_FROM, *src_mem}, {MKLDNN_ARG_TO, *dst_mem}});
A
Adam 已提交
310
    astream.wait();
M
Michał Gallus 已提交
311 312 313 314 315

    return dst_mem;
  }

  template <typename T>
A
Adam 已提交
316 317
  static mkldnn::memory::desc CreateMemDescriptor(
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
318 319
    return platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(),
                                   format);
M
mozga-intel 已提交
320 321
  }

M
Michał Gallus 已提交
322
  template <typename T>
323
  static mkldnn::memory::desc CreateMemDescriptor(const Tensor* tensor,
324
                                                  MKLDNNMemoryFormat format) {
A
Adam 已提交
325
    auto dims = framework::vectorize(tensor->dims());
M
Michał Gallus 已提交
326
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
327 328
  }

M
Michał Gallus 已提交
329
  template <typename T>
330 331
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc,
                              const Tensor* tensor) {
A
Adam 已提交
332
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
333 334
  }

A
Adam 已提交
335 336
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc, void* data) {
    return memory(desc, engine_, data);
M
mozga-intel 已提交
337 338
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352
  template <typename T>
  std::shared_ptr<mkldnn::memory> CreateMemoryToBeCached(
      const mkldnn::memory::desc& desc, const Tensor* tensor) {
    return CreateMemoryToBeCached(desc,
                                  platform::to_void_cast<T>(tensor->data<T>()));
  }

  std::shared_ptr<mkldnn::memory> CreateMemoryToBeCached(
      const mkldnn::memory::desc& desc, void* data) {
    return std::make_shared<memory>(desc, engine_, data);
  }

  // Create weights memory and transform to default MKL-DNN format
  std::shared_ptr<mkldnn::memory> CreateWeightsMemory(const Tensor* weights) {
A
Adam 已提交
353
    auto dims = framework::vectorize(weights->dims());
354
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
355 356
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
357
    // Transpose weights through MKL-DNN's reorder from io to oi format.
A
Adam 已提交
358 359
    return Reorder(src_desc, dst_desc,
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
360 361
  }

362 363 364 365 366 367 368 369 370
  void CacheWeightsAndBias(const MKLDNNDeviceContext& dev_ctx,
                           const ExecutionContext& ctx) {
    const std::string key = platform::CreateKey(platform::ThreadIDasStr());
    const std::string weights_key = key + ctx.InputName("W");
    const std::string bias_key = key + ctx.InputName("Bias");
    dev_ctx.SetBlob(weights_key, weights_);
    dev_ctx.SetBlob(bias_key, bias_);
  }

M
Michał Gallus 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
  std::vector<float> ComputeOutputShiftScale(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    // If the output will be in floats, we don't multiply by scale_out.
    auto scale_out_data = ctx.Attr<bool>("force_fp32_output")
                              ? 1.0f
                              : ctx.Attr<float>("Scale_out");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_in_data * scale_weights_data[i]);
    }

    return output_shift_scale;
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

425
  void QuantizeWeights(const ExecutionContext& ctx, memory::desc dst) {
426 427
    weights_ = ReorderWithScale(weights_, dst,
                                ctx.Attr<std::vector<float>>("Scale_weights"));
M
Michał Gallus 已提交
428 429 430 431 432
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
433
    bias_ = ReorderWithScale(bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  }

  // Fuse relu into FC with activation type attribute has been set to 'relu'
  mkldnn::primitive_attr CreatePostOps(const ExecutionContext& ctx) {
    mkldnn::primitive_attr attributes;
    mkldnn::post_ops post_operations;

    auto output_shift_scale = ComputeOutputShiftScale(ctx);
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }

    attributes.set_post_ops(post_operations);
    return attributes;
455
  }
M
mozga-intel 已提交
456

457 458 459 460
  mkldnn::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const mkldnn::memory::desc& input_desc,
      const mkldnn::memory::desc& weights_desc,
      const mkldnn::memory::desc& bias_desc,
M
Michał Gallus 已提交
461 462
      const mkldnn::memory::desc& dst_desc,
      const mkldnn::primitive_attr& attrs) {
463 464 465
    auto fc_desc =
        inner_product_forward::desc(prop_kind::forward_scoring, input_desc,
                                    weights_desc, bias_desc, dst_desc);
M
mozga-intel 已提交
466

M
Michał Gallus 已提交
467
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
468
  }
M
mozga-intel 已提交
469

M
Michał Gallus 已提交
470 471
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
472 473 474
  mkldnn::memory CreateDstMemory(
      const mkldnn::inner_product_forward::primitive_desc& fc_prim_desc,
      const ExecutionContext& ctx, Tensor* output) {
A
Adam 已提交
475 476
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
477 478
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
479
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
480
    SetOutputFormat(ctx.Input<LoDTensor>("Input")->format(), output);
481

A
Adam 已提交
482
    return dst_mem;
483
  }
M
mozga-intel 已提交
484

485 486
  void RecomputeOutputDims(const ExecutionContext& ctx, const LoDTensor* input,
                           const Tensor* w, LoDTensor* output) {
L
luotao1 已提交
487
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
488 489 490 491
    bool padding_weights = ctx.Attr<bool>("padding_weights");
    PADDLE_ENFORCE_EQ(padding_weights, false,
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
492
    std::vector<int64_t> output_dims;
493 494
    FCOutputSize(input->dims(), w->dims(), output_dims, in_num_col_dims,
                 padding_weights);
L
luotao1 已提交
495 496
    output->Resize(framework::make_ddim(output_dims));
    output->set_lod(input->lod());
497
  }
L
luotao1 已提交
498

499 500 501 502
 private:
  const mkldnn::engine& engine_;
  boost::optional<memory> input_;
  boost::optional<memory> output_;
503 504
  std::shared_ptr<memory> bias_;
  std::shared_ptr<memory> weights_;
505 506
  boost::optional<inner_product_forward> fc_;
};
M
mozga-intel 已提交
507

M
Michał Gallus 已提交
508 509 510 511 512 513
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
514
                    const std::string& key) {
515
  auto prim_creator =
M
Michał Gallus 已提交
516 517
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
518
  if (prim_creator == nullptr) {
519 520
    prim_creator = std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(
        dev_ctx.GetEngine());
521
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
522 523
  }

524 525
  return prim_creator;
}
M
mozga-intel 已提交
526

M
Michał Gallus 已提交
527 528 529
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
530
static void ExecuteFc(const ExecutionContext& ctx, const LoDTensor* input,
A
Adam 已提交
531
                      const Tensor* w, const Tensor* bias, LoDTensor* output,
532 533 534 535 536
                      bool fuse_relu, bool force_fp32_output) {
  auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const std::string prim_key = platform::CreateKey(
      platform::ThreadIDasStr(), input->format(), input->dims()[0],
      framework::vectorize<int>(w->dims()), ctx.OutputName("Out"));
M
Michał Gallus 已提交
537 538 539
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
  if (!is_int8 || force_fp32_output) {
540 541
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
542
  } else if (fuse_relu) {
543 544
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
545
  } else {
546 547
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, prim_key)
        ->ExecuteFcPrimitive(input, w, bias, output, dev_ctx, ctx);
M
Michał Gallus 已提交
548 549 550 551 552
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
553 554
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
555 556 557
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
558 559
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
560
    auto bias = ctx.Input<Tensor>("Bias");
561
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
562

M
Michał Gallus 已提交
563 564 565
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

566 567
    ExecuteFc<T_in, T_w>(ctx, input, w, bias, output, fuse_relu,
                         force_fp32_output);
M
mozga-intel 已提交
568

569
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
570 571 572 573 574
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kFCMKLDNNFP32,
                                    ops::FCMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);