fc_mkldnn_op.cc 22.0 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <mkldnn/include/mkldnn_types.h>
#include <memory>
M
mozga-intel 已提交
17
#include "paddle/fluid/framework/tensor.h"
18
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
19 20
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
21
#include "paddle/fluid/platform/variant.h"
M
mozga-intel 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37 38
using framework::DataLayout;
using framework::Tensor;
using framework::LoDTensor;
using framework::DDim;
using framework::ExecutionContext;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
using mkldnn::memory;
using mkldnn::inner_product_forward;
using mkldnn::primitive;
using mkldnn::stream;
using mkldnn::prop_kind;
M
mozga-intel 已提交
39

M
Michał Gallus 已提交
40
template <typename T_in, typename T_w, typename T_out>
41
class FCPrimitiveFactory {
M
mozga-intel 已提交
42
 public:
43 44
  explicit FCPrimitiveFactory(const mkldnn::engine& engine) : engine_(engine) {}

A
Adam 已提交
45 46 47
  void ExecuteFcPrimitive(const LoDTensor* input, const Tensor* weights,
                          const Tensor* bias, LoDTensor* output,
                          const ExecutionContext& ctx) {
48
    RecomputeOutputDims(ctx, input, weights, output);
M
Michał Gallus 已提交
49 50
    // If primitive has already been created and cached, don't create new one,
    // but update input and output data pointers and return it.
51 52
    if (fc_) {
      UpdateDataPointers(ctx, output, input);
A
Adam 已提交
53 54
      this->Execute();
      return;
55
    }  // Otherwise, create a new one.
M
mozga-intel 已提交
56

57
    // Transform weights to default MKL-DNN format
58
    weights_ = TransposeWeights(weights);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    // Since MKL-DNN has a lot of limitations on what the input/weights/output
    // dimensions should be, to simplify the code, the creation of primitive
    // descriptor has been divided into separate cases, based on the number
    // of input dimensions.
    size_t input_dim_num = input->dims().size();
    boost::optional<mkldnn::inner_product_forward::primitive_desc> fc_prim_desc;
    memory::desc usr_weights_desc = {};
    switch (input_dim_num) {
      case 2:
        fc_prim_desc =
            Create2DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create2DUserWeightsDesc();
        break;
      case 3:
        fc_prim_desc =
            Create3DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create3DUserWeightsDesc(weights);
        break;
      case 4:
        fc_prim_desc =
            Create4DFcPrimDescriptor(input, weights, bias, output, ctx);
        usr_weights_desc = Create4DUserWeightsDesc(input, weights);
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "DNNL FC doesn't support input dims different than 2, 3, 4."));
        break;
86
    }
87 88 89 90
    input_ = CreateMemory<T_in>(fc_prim_desc->src_desc(), input);
    // Update weights format inside of its memory
    weights_ = Reorder(usr_weights_desc, usr_weights_desc,
                       weights_->get_data_handle());
91

92 93 94 95 96 97
    // Quantize weights and reorder to format chosen by FC primitive descriptor.
    QuantizeWeights(ctx, fc_prim_desc->weights_desc());

    bias_ = CreateMemory<float>(fc_prim_desc->bias_desc(), bias);
    // If int8 is desired, quantize bias into 32-bit signed int
    QuantizeBias(*fc_prim_desc, ctx);
M
mozga-intel 已提交
98

99 100 101 102 103 104
    // Based on format determined by inner_product, create output in desired
    // memory format
    output_ = CreateDstMemory(*fc_prim_desc, ctx, output);

    // Return MKL-DNN primitive ready to be fed into pipeline and executed
    fc_ = inner_product_forward(*fc_prim_desc);
A
Adam 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    this->Execute();
  }

  void Execute() {
    mkldnn::stream astream(engine_);
    if (bias_) {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_BIAS, *bias_},
                             {MKLDNN_ARG_DST, *output_}});
    } else {
      fc_->execute(astream, {{MKLDNN_ARG_SRC, *input_},
                             {MKLDNN_ARG_WEIGHTS, *weights_},
                             {MKLDNN_ARG_DST, *output_}});
    }
    astream.wait();
M
mozga-intel 已提交
121 122
  }

123 124 125
 private:
  void UpdateDataPointers(const ExecutionContext& ctx, Tensor* out,
                          const Tensor* in) {
M
Michał Gallus 已提交
126 127 128 129 130
    input_->set_data_handle(to_void_cast(in->data<T_in>()));
    output_->set_data_handle(out->mutable_data<T_out>(ctx.GetPlace()));
    // If the primitive exists, but the output tensor has changed its
    // variable, update its format to what has been determined in first
    // call to CreateFcPrimitive method.
A
Adam 已提交
131
    if (out->format() == MKLDNNMemoryFormat::undef) {
132 133 134 135 136 137 138 139 140 141 142
      MKLDNNMemoryFormat format;
      auto data_type = input_->get_desc().data.data_type;
      if (data_type == mkldnn_f32)
        format = MKLDNNMemoryFormat::nchw;
      else
        format = MKLDNNMemoryFormat::nhwc;

      MKLDNNMemoryFormat selected = platform::MKLDNNFormatForSize(
          framework::vectorize<int>(out->dims()).size(), format);

      out->set_format(selected);
143
    }
M
mozga-intel 已提交
144 145
  }

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  mkldnn::inner_product_forward::primitive_desc Create2DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    auto weight_dims = Get2DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get2DWeightDimsForDNNL(const Tensor* weights) {
    auto dims = framework::vectorize(weights->dims());
    std::swap(dims[0], dims[1]);  // swap input dim with output dim
    return dims;
  }

  memory::desc Create2DUserWeightsDesc() { return weights_->get_desc(); }

  mkldnn::inner_product_forward::primitive_desc Create3DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto input_dims = framework::vectorize(input->dims());
    std::vector<int64_t> new_input_dims = {input_dims[0] * input_dims[1], 1,
                                           input_dims[2]};
    auto src_desc = CreateMemDescriptor<T_in>(new_input_dims, input->format());

    auto weight_dims = Get3DWeightDimsForDNNL(weights);
    auto weights_desc =
        CreateMemDescriptor<T_w>(weight_dims, MKLDNNMemoryFormat::any);

    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);

    auto dst_dims = {input_dims[0] * input_dims[1], weight_dims[0]};
    auto dst_desc =
        CreateMemDescriptor<T_out>(dst_dims, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get3DWeightDimsForDNNL(const Tensor* weights) {
    auto paddle_w_dims = framework::vectorize(weights->dims());
    return {paddle_w_dims[1], 1, paddle_w_dims[0]};
  }

  memory::desc Create3DUserWeightsDesc(const Tensor* weights) {
    auto dims = Get3DWeightDimsForDNNL(weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oiw);
  }

  mkldnn::inner_product_forward::primitive_desc Create4DFcPrimDescriptor(
      const LoDTensor* input, const Tensor* weights, const Tensor* bias,
      LoDTensor* output, const ExecutionContext& ctx) {
    auto src_desc = CreateMemDescriptor<T_in>(input, input->format());
    // Since MKL-DNN doesn't support 4D column-major data formats in
    // inner_product primitive, transpose the weights to be in
    // row-major format
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    auto weights_desc = CreateMemDescriptor<T_w>(dims, MKLDNNMemoryFormat::any);
    auto bias_desc = CreateMemDescriptor<float>(bias, MKLDNNMemoryFormat::x);
    auto dst_desc = CreateMemDescriptor<T_out>(output, MKLDNNMemoryFormat::any);
    const auto attrs = CreatePostOps(ctx);
    return CreateFcPrimDesc(src_desc, weights_desc, bias_desc, dst_desc, attrs);
  }

  std::vector<int64_t> Get4DWeightDimsForDNNL(const LoDTensor* input,
                                              const Tensor* weights) {
    auto old_w_dims = framework::vectorize(weights->dims());
    auto old_in_dims = framework::vectorize(input->dims());
    auto dims = {old_w_dims[1], old_in_dims[1], old_in_dims[2], old_in_dims[3]};
    return dims;
  }

  memory::desc Create4DUserWeightsDesc(const LoDTensor* input,
                                       const Tensor* weights) {
    auto dims = Get4DWeightDimsForDNNL(input, weights);
    return CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oihw);
M
mozga-intel 已提交
225 226
  }

M
Michał Gallus 已提交
227
  // Convert data from one data format to another
228
  mkldnn::memory Reorder(const memory::desc& src_desc,
A
Adam 已提交
229 230 231
                         const memory::desc& dst_desc, void* src_data) {
    auto src_mem = memory(src_desc, engine_, src_data);
    auto dst_mem = memory(dst_desc, engine_);
M
mozga-intel 已提交
232

233
    auto reorder = mkldnn::reorder(src_mem, dst_mem);
A
Adam 已提交
234 235 236
    mkldnn::stream astream(engine_);
    reorder.execute(astream, src_mem, dst_mem);
    astream.wait();
M
mozga-intel 已提交
237

238
    return dst_mem;
M
mozga-intel 已提交
239 240
  }

M
Michał Gallus 已提交
241 242
  // Convert data from one data format to another and rescale it.
  // If the desired data type is (un)signed int8, quantization occurs here.
A
Adam 已提交
243
  mkldnn::memory Reorder(const memory& src_mem, const memory::desc& dst_md,
M
Michał Gallus 已提交
244
                         const std::vector<float>& scale_data) {
A
Adam 已提交
245
    mkldnn::memory dst_mem = mkldnn::memory(dst_md, engine_);
M
Michał Gallus 已提交
246 247 248 249 250 251 252 253 254
    mkldnn::primitive_attr attributes;
    // According to MKL-DNN's documentation mask determines along which
    // dimensions should the scale be applied.
    // 0 - Single scale applied to whole tensor
    // 1 - Apply Scale along a slice of each dimension which index is 1.
    //     In case of weights quantization, that dimension is output,
    //     becuase we perform per-output-channel quantization
    int mask = CreateMask(0, scale_data.size() > 1);
    attributes.set_output_scales(mask, scale_data);
A
Adam 已提交
255
    auto reorder = mkldnn::reorder({src_mem, dst_mem, attributes});
M
Michał Gallus 已提交
256

A
Adam 已提交
257 258 259 260
    mkldnn::stream astream(engine_);
    reorder.execute(astream,
                    {{MKLDNN_ARG_FROM, src_mem}, {MKLDNN_ARG_TO, dst_mem}});
    astream.wait();
M
Michał Gallus 已提交
261 262 263 264 265

    return dst_mem;
  }

  template <typename T>
A
Adam 已提交
266 267
  static mkldnn::memory::desc CreateMemDescriptor(
      const std::vector<int64_t>& dims, MKLDNNMemoryFormat format) {
268 269
    return platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(),
                                   format);
M
mozga-intel 已提交
270 271
  }

M
Michał Gallus 已提交
272
  template <typename T>
273
  static mkldnn::memory::desc CreateMemDescriptor(const Tensor* tensor,
274
                                                  MKLDNNMemoryFormat format) {
A
Adam 已提交
275
    auto dims = framework::vectorize(tensor->dims());
M
Michał Gallus 已提交
276
    return CreateMemDescriptor<T>(dims, format);
M
mozga-intel 已提交
277 278
  }

M
Michał Gallus 已提交
279
  template <typename T>
280 281
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc,
                              const Tensor* tensor) {
A
Adam 已提交
282
    return CreateMemory(desc, platform::to_void_cast<T>(tensor->data<T>()));
M
mozga-intel 已提交
283 284
  }

A
Adam 已提交
285 286
  mkldnn::memory CreateMemory(const mkldnn::memory::desc& desc, void* data) {
    return memory(desc, engine_, data);
M
mozga-intel 已提交
287 288
  }

M
Michał Gallus 已提交
289
  // Transpose weights through MKL-DNN's reorder from io to oi format.
290
  mkldnn::memory TransposeWeights(const Tensor* weights) {
A
Adam 已提交
291
    auto dims = framework::vectorize(weights->dims());
292
    std::swap(dims[0], dims[1]);  // Correct output dimensions
M
Michał Gallus 已提交
293 294
    auto src_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::io);
    auto dst_desc = CreateMemDescriptor<float>(dims, MKLDNNMemoryFormat::oi);
A
Adam 已提交
295 296
    return Reorder(src_desc, dst_desc,
                   platform::to_void_cast<float>(weights->data<float>()));
M
Michał Gallus 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  }

  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
  std::vector<float> ComputeBiasScales(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> bias_scales(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        bias_scales[i] = 1.0f;
      else
        bias_scales[i] = scale_in_data * scale_weights_data[i];
    }

    return bias_scales;
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
  std::vector<float> ComputeOutputShiftScale(const ExecutionContext& ctx) {
    auto scale_in_data = ctx.Attr<float>("Scale_in");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    // If the output will be in floats, we don't multiply by scale_out.
    auto scale_out_data = ctx.Attr<bool>("force_fp32_output")
                              ? 1.0f
                              : ctx.Attr<float>("Scale_out");
    const size_t weight_scales_num = scale_weights_data.size();
    std::vector<float> output_shift_scale(weight_scales_num);

#pragma omp parallel for
    for (size_t i = 0; i < weight_scales_num; i++) {
      if (scale_weights_data[i] == 0.0)
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            scale_out_data / (scale_in_data * scale_weights_data[i]);
    }

    return output_shift_scale;
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

353 354 355
  void QuantizeWeights(const ExecutionContext& ctx, memory::desc dst) {
    weights_ =
        Reorder(*weights_, dst, ctx.Attr<std::vector<float>>("Scale_weights"));
M
Michał Gallus 已提交
356 357 358 359 360
  }

  void QuantizeBias(const inner_product_forward::primitive_desc& fc_prim_desc,
                    const ExecutionContext& ctx) {
    auto bias_scales = ComputeBiasScales(ctx);
A
Adam 已提交
361
    bias_ = Reorder(*bias_, fc_prim_desc.bias_desc(), bias_scales);
M
Michał Gallus 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  }

  // Fuse relu into FC with activation type attribute has been set to 'relu'
  mkldnn::primitive_attr CreatePostOps(const ExecutionContext& ctx) {
    mkldnn::primitive_attr attributes;
    mkldnn::post_ops post_operations;

    auto output_shift_scale = ComputeOutputShiftScale(ctx);
    int mask = CreateMask(1, output_shift_scale.size() > 1);
    attributes.set_output_scales(mask, output_shift_scale);

    if (ctx.Attr<std::string>("activation_type") == "relu") {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }

    attributes.set_post_ops(post_operations);
    return attributes;
383
  }
M
mozga-intel 已提交
384

385 386 387 388
  mkldnn::inner_product_forward::primitive_desc CreateFcPrimDesc(
      const mkldnn::memory::desc& input_desc,
      const mkldnn::memory::desc& weights_desc,
      const mkldnn::memory::desc& bias_desc,
M
Michał Gallus 已提交
389 390
      const mkldnn::memory::desc& dst_desc,
      const mkldnn::primitive_attr& attrs) {
391 392 393
    auto fc_desc =
        inner_product_forward::desc(prop_kind::forward_scoring, input_desc,
                                    weights_desc, bias_desc, dst_desc);
M
mozga-intel 已提交
394

M
Michał Gallus 已提交
395
    return inner_product_forward::primitive_desc(fc_desc, attrs, engine_);
396
  }
M
mozga-intel 已提交
397

M
Michał Gallus 已提交
398 399
  // Create output memory based on output tensor and inner_product
  // primitive descriptor format chosen for output
400 401 402
  mkldnn::memory CreateDstMemory(
      const mkldnn::inner_product_forward::primitive_desc& fc_prim_desc,
      const ExecutionContext& ctx, Tensor* output) {
A
Adam 已提交
403 404
    auto dst_desc = fc_prim_desc.dst_desc();
    auto buffer_size = dst_desc.get_size();
M
Michał Gallus 已提交
405 406
    T_out* output_data =
        output->mutable_data<T_out>(ctx.GetPlace(), buffer_size);
A
Adam 已提交
407
    memory dst_mem(dst_desc, engine_, to_void_cast<T_out>(output_data));
408 409 410 411 412 413 414 415 416 417 418 419

    MKLDNNMemoryFormat format;
    auto data_type = input_->get_desc().data.data_type;
    if (data_type == mkldnn_f32)
      format = MKLDNNMemoryFormat::nchw;
    else
      format = MKLDNNMemoryFormat::nhwc;

    MKLDNNMemoryFormat selected = platform::MKLDNNFormatForSize(
        framework::vectorize<int>(output->dims()).size(), format);

    output->set_format(selected);
A
Adam 已提交
420
    return dst_mem;
421
  }
M
mozga-intel 已提交
422

423 424
  void RecomputeOutputDims(const ExecutionContext& ctx, const LoDTensor* input,
                           const Tensor* w, LoDTensor* output) {
L
luotao1 已提交
425
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
426 427 428 429
    bool padding_weights = ctx.Attr<bool>("padding_weights");
    PADDLE_ENFORCE_EQ(padding_weights, false,
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
430
    std::vector<int64_t> output_dims;
431 432
    FCOutputSize(input->dims(), w->dims(), output_dims, in_num_col_dims,
                 padding_weights);
L
luotao1 已提交
433 434
    output->Resize(framework::make_ddim(output_dims));
    output->set_lod(input->lod());
435
  }
L
luotao1 已提交
436

437 438 439 440 441 442 443 444
 private:
  const mkldnn::engine& engine_;
  boost::optional<memory> bias_;
  boost::optional<memory> input_;
  boost::optional<memory> output_;
  boost::optional<memory> weights_;
  boost::optional<inner_product_forward> fc_;
};
M
mozga-intel 已提交
445

M
Michał Gallus 已提交
446 447 448 449 450 451 452 453 454
// Attempt to fetch cached primitive factory based on provided parameters
// of input format, weight dimensions and output name.
// If not cached, create a new one.
template <typename T_in, typename T_w, typename T_out>
static std::shared_ptr<FCPrimitiveFactory<T_in, T_w, T_out>>
GetPrimitiveFactory(const MKLDNNDeviceContext& dev_ctx,
                    const ExecutionContext& ctx, const Tensor* input,
                    const Tensor* weights,
                    const mkldnn::engine& mkldnn_engine) {
455
  const std::string key = platform::CreateKey(
M
Michał Gallus 已提交
456
      platform::ThreadIDasStr(), input->format(),
H
hong 已提交
457
      framework::vectorize<int>(weights->dims()), ctx.OutputName("Out"));
458 459

  auto prim_creator =
M
Michał Gallus 已提交
460 461
      std::static_pointer_cast<FCPrimitiveFactory<T_in, T_w, T_out>>(
          dev_ctx.GetBlob(key));
462
  if (prim_creator == nullptr) {
M
Michał Gallus 已提交
463 464
    prim_creator =
        std::make_shared<FCPrimitiveFactory<T_in, T_w, T_out>>(mkldnn_engine);
465
    dev_ctx.SetBlob(key, prim_creator);
M
mozga-intel 已提交
466 467
  }

468 469
  return prim_creator;
}
M
mozga-intel 已提交
470

M
Michał Gallus 已提交
471 472 473
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename T_in, typename T_w>
A
Adam 已提交
474 475 476 477 478
static void ExecuteFc(const MKLDNNDeviceContext& dev_ctx,
                      const ExecutionContext& ctx, const LoDTensor* input,
                      const Tensor* w, const Tensor* bias, LoDTensor* output,
                      const mkldnn::engine& mkldnn_engine, bool fuse_relu,
                      bool force_fp32_output) {
M
Michał Gallus 已提交
479 480 481
  constexpr bool is_int8 =
      std::is_same<T_in, int8_t>::value || std::is_same<T_in, uint8_t>::value;
  if (!is_int8 || force_fp32_output) {
A
Adam 已提交
482 483
    GetPrimitiveFactory<T_in, T_w, float>(dev_ctx, ctx, input, w, mkldnn_engine)
        ->ExecuteFcPrimitive(input, w, bias, output, ctx);
M
Michał Gallus 已提交
484
  } else if (fuse_relu) {
A
Adam 已提交
485 486 487
    GetPrimitiveFactory<T_in, T_w, uint8_t>(dev_ctx, ctx, input, w,
                                            mkldnn_engine)
        ->ExecuteFcPrimitive(input, w, bias, output, ctx);
M
Michał Gallus 已提交
488
  } else {
A
Adam 已提交
489 490 491
    GetPrimitiveFactory<T_in, T_w, int8_t>(dev_ctx, ctx, input, w,
                                           mkldnn_engine)
        ->ExecuteFcPrimitive(input, w, bias, output, ctx);
M
Michał Gallus 已提交
492 493 494 495 496
  }
}

template <typename T_in, typename T_w>
class FCMKLDNNOpKernel : public framework::OpKernel<T_in> {
M
mozga-intel 已提交
497 498
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
Michał Gallus 已提交
499 500 501
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("FC MKL-DNN must use CPUPlace."));
M
mozga-intel 已提交
502 503 504
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

505 506
    auto input = ctx.Input<LoDTensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
507
    auto bias = ctx.Input<Tensor>("Bias");
508
    auto output = ctx.Output<LoDTensor>("Out");
M
mozga-intel 已提交
509

M
Michał Gallus 已提交
510 511 512
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");

A
Adam 已提交
513 514
    ExecuteFc<T_in, T_w>(dev_ctx, ctx, input, w, bias, output, mkldnn_engine,
                         fuse_relu, force_fp32_output);
M
mozga-intel 已提交
515

516
    output->set_layout(DataLayout::kMKLDNN);
M
mozga-intel 已提交
517 518 519 520 521
  }
};
}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    FP32, ops::kFCMKLDNNFP32,
                                    ops::FCMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    U8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<uint8_t, int8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(fc, MKLDNN, ::paddle::platform::CPUPlace,
                                    S8, ops::kFCMKLDNNINT8,
                                    ops::FCMKLDNNOpKernel<int8_t, int8_t>);