heter_comm.h 7.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
Thunderbrook 已提交
16
#include <thread>
T
Thunderbrook 已提交
17
#include <vector>
18
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
19
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
T
Thunderbrook 已提交
20
#include "paddle/fluid/platform/cuda_device_guard.h"
21
#include "paddle/fluid/platform/dynload/nccl.h"
T
Thunderbrook 已提交
22
#include "thrust/pair.h"
23 24 25 26 27 28 29 30 31 32 33
#elif defined(PADDLE_WITH_XPU_KP)
#include <xpu/runtime.h>
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif

#include "paddle/fluid/framework/fleet/heter_ps/hashtable.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
34

T
Thunderbrook 已提交
35
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace framework {

template <typename KeyType, typename ValType, typename GradType>
class HeterComm {
 public:
  HeterComm(size_t capacity, std::shared_ptr<HeterPsResource> resource);
  virtual ~HeterComm();
  HeterComm(const HeterComm&) = delete;
  HeterComm& operator=(const HeterComm&) = delete;

  void split_input_to_shard(KeyType* d_keys, int* d_idx_ptr, size_t len,
                            int* left, int* right, int gpu_num);
  void merge_grad(int gpu_num, KeyType* d_keys, GradType* d_grads, size_t len,
51
                  int& uniq_len);  // NOLINT
T
Thunderbrook 已提交
52 53 54 55 56 57 58
  void pull_sparse(int num, KeyType* d_keys, ValType* d_vals, size_t len);
  void build_ps(int num, KeyType* h_keys, ValType* h_vals, size_t len,
                size_t chunk_size, int stream_num);
  void dump();
  void show_one_table(int gpu_num);
  int get_index_by_devid(int devid);

59
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
60 61
  template <typename Sgd>
  void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len,
62
                   Sgd& sgd);  // NOLINT
63 64 65 66 67
#elif defined(PADDLE_WITH_XPU_KP)
  void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len);
#endif

  int log2i(int x);
T
Thunderbrook 已提交
68

69 70 71 72 73
  template <typename DstPlace, typename SrcPlace, typename StreamType>
  void memory_copy(DstPlace dst_place, void* dst, SrcPlace src_place,
                   const void* src, size_t count, StreamType stream = 0);

#if defined(PADDLE_WITH_CUDA)
74 75
  template <typename Sgd>
  void push_sparse_multi_node(int num, KeyType* d_keys, GradType* d_grads,
76
                              size_t len, Sgd& sgd);  // NOLINT
77 78 79

  template <typename Sgd>
  void update_one_table(int num, KeyType* d_keys, GradType* d_grads, size_t len,
80
                        Sgd& sgd);  // NOLINT
81 82 83 84 85 86 87 88 89 90 91 92 93 94

  int gather_one_node_grad(int num, KeyType* d_keys, GradType* d_grads,
                           int len);

  int gather_multi_node_grad(int num, KeyType* d_keys, GradType* d_grads,
                             int len);

  void set_nccl_comm_and_size(const std::vector<ncclComm_t>& inner_comms,
                              const std::vector<ncclComm_t>& inter_comms,
                              int comm_size) {
    nccl_inner_comms_ = inner_comms;
    nccl_inter_comms_ = inter_comms;
    node_size_ = comm_size;
  }
95
#endif
96

97 98 99 100
  bool need_transfer(int send_id, int receive_id) {
    return ((send_id / 4 != receive_id / 4) && (send_id + 4) % 8 != receive_id);
  }

T
Thunderbrook 已提交
101 102
  // void dump_to_cpu(int index);

103 104
  int get_transfer_devid(int send_id) { return (send_id + 4) % 8; }

105 106
  void end_pass();

107
  struct Node {
108 109
    ppStream in_stream;
    ppStream out_stream;
110 111 112 113 114
    char* key_storage;
    char* val_storage;
    int sync;
    int key_bytes_len;
    int val_bytes_len;
115
    int dev_num;
116 117 118 119 120 121
  };

  struct Path {
    std::vector<Node> nodes_;
  };

122 123 124 125 126 127
  struct CopyTask {
    Path* path;
    int step;
    CopyTask(Path* path_, int step_) : path(path_), step(step_) {}
  };

128 129 130 131 132 133 134
  struct LocalStorage {
    LocalStorage() {}
    void init(int size, int dev_id) {
      place_ = platform::CUDAPlace(dev_id);
      alloc(size, true);
    }

135
    void alloc(size_t size, bool force = false) {
136 137 138
      if (force || size > all_keys_mem->size()) {
        all_keys_mem.reset();
        all_grads_mem.reset();
139 140
        all_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        all_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
141 142 143 144 145 146
        all_keys = reinterpret_cast<KeyType*>(all_keys_mem->ptr());
        all_grads = reinterpret_cast<GradType*>(all_grads_mem->ptr());
      }
      if (force || size > local_keys_mem->size()) {
        local_keys_mem.reset();
        local_grads_mem.reset();
147 148
        local_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        local_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
149 150 151 152 153
        local_keys = reinterpret_cast<KeyType*>(local_keys_mem->ptr());
        local_grads = reinterpret_cast<GradType*>(local_grads_mem->ptr());
      }
    }

154
#if defined(PADDLE_WITH_CUDA)
155
    platform::CUDAPlace place_;
156 157 158
#elif defined(PADDLE_WITH_XPU_KP)
    platform::XPUPlace place_;
#endif
159 160 161 162 163 164 165 166 167 168 169
    std::shared_ptr<memory::Allocation> all_keys_mem;
    std::shared_ptr<memory::Allocation> all_grads_mem;
    KeyType* all_keys;
    GradType* all_grads;

    std::shared_ptr<memory::Allocation> local_keys_mem;
    std::shared_ptr<memory::Allocation> local_grads_mem;
    KeyType* local_keys;
    GradType* local_grads;
  };

170
  void init_path();
T
Thunderbrook 已提交
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  template <typename StreamType>
  void sync_stream(const StreamType& stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_wait(stream));
#endif
  }

  template <typename StreamType>
  void create_stream(StreamType* stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamCreate(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_create(stream));
#endif
  }

  template <typename StreamType>
  void destroy_stream(StreamType stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamDestroy(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_destroy(stream));
#endif
  }

T
Thunderbrook 已提交
199 200
  void create_storage(int start_index, int end_index, int keylen, int vallen);
  void destroy_storage(int start_index, int end_index);
201 202 203 204
  void walk_to_dest(int start_index, int gpu_num, int* h_left, int* h_right,
                    KeyType* src_key, GradType* src_val);
  void walk_to_src(int start_index, int gpu_num, int* h_left, int* h_right,
                   ValType* src_val);
T
Thunderbrook 已提交
205

S
seemingwang 已提交
206
 protected:
T
Thunderbrook 已提交
207 208 209
  using Table = HashTable<KeyType, ValType>;
  std::vector<Table*> tables_;
  std::shared_ptr<HeterPsResource> resource_;
210
  std::vector<std::vector<Path>> path_;
S
seemingwang 已提交
211 212 213 214
  float load_factor_{0.75};
  int block_size_{256};

 private:
215
  std::unique_ptr<HeterCommKernel> heter_comm_kernel_;
216
  std::vector<LocalStorage> storage_;
S
seemingwang 已提交
217
  int topo_aware_{0};
218
  int feanum_{1800 * 2048};
T
Thunderbrook 已提交
219
  int multi_node_{0};
220 221 222
  int node_size_;

#if defined(PADDLE_WITH_CUDA)
223 224
  std::vector<ncclComm_t> nccl_inner_comms_;
  std::vector<ncclComm_t> nccl_inter_comms_;
T
Thunderbrook 已提交
225
  std::vector<std::shared_ptr<cub::CachingDeviceAllocator>> allocators_;
226
#endif
T
Thunderbrook 已提交
227 228 229 230
};

}  // end namespace framework
}  // end namespace paddle
T
Thunderbrook 已提交
231
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h"
T
Thunderbrook 已提交
232
#endif