heter_comm.h 7.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
Thunderbrook 已提交
16
#include <thread>
T
Thunderbrook 已提交
17
#include <vector>
18
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
19
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
T
Thunderbrook 已提交
20
#include "paddle/fluid/platform/cuda_device_guard.h"
21
#include "paddle/fluid/platform/dynload/nccl.h"
T
Thunderbrook 已提交
22
#include "thrust/pair.h"
23 24 25 26 27 28 29 30 31 32 33
#elif defined(PADDLE_WITH_XPU_KP)
#include <xpu/runtime.h>
#include "paddle/fluid/platform/device/xpu/enforce_xpu.h"
#endif

#include "paddle/fluid/framework/fleet/heter_ps/hashtable.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/place.h"
T
Thunderbrook 已提交
34

T
Thunderbrook 已提交
35
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace framework {

template <typename KeyType, typename ValType, typename GradType>
class HeterComm {
 public:
  HeterComm(size_t capacity, std::shared_ptr<HeterPsResource> resource);
  virtual ~HeterComm();
  HeterComm(const HeterComm&) = delete;
  HeterComm& operator=(const HeterComm&) = delete;

  void split_input_to_shard(KeyType* d_keys, int* d_idx_ptr, size_t len,
                            int* left, int* right, int gpu_num);
  void merge_grad(int gpu_num, KeyType* d_keys, GradType* d_grads, size_t len,
51
                  int& uniq_len);  // NOLINT
T
Thunderbrook 已提交
52 53 54 55 56 57 58
  void pull_sparse(int num, KeyType* d_keys, ValType* d_vals, size_t len);
  void build_ps(int num, KeyType* h_keys, ValType* h_vals, size_t len,
                size_t chunk_size, int stream_num);
  void dump();
  void show_one_table(int gpu_num);
  int get_index_by_devid(int devid);

59
#if defined(PADDLE_WITH_CUDA)
T
Thunderbrook 已提交
60 61
  template <typename Sgd>
  void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len,
62
                   Sgd& sgd);  // NOLINT
63 64 65 66 67
#elif defined(PADDLE_WITH_XPU_KP)
  void push_sparse(int num, KeyType* d_keys, GradType* d_grads, size_t len);
#endif

  int log2i(int x);
T
Thunderbrook 已提交
68

69 70 71 72 73
  template <typename DstPlace, typename SrcPlace, typename StreamType>
  void memory_copy(DstPlace dst_place, void* dst, SrcPlace src_place,
                   const void* src, size_t count, StreamType stream = 0);

#if defined(PADDLE_WITH_CUDA)
74 75
  template <typename Sgd>
  void push_sparse_multi_node(int num, KeyType* d_keys, GradType* d_grads,
76
                              size_t len, Sgd& sgd);  // NOLINT
77 78 79

  template <typename Sgd>
  void update_one_table(int num, KeyType* d_keys, GradType* d_grads, size_t len,
80
                        Sgd& sgd);  // NOLINT
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  int gather_one_node_grad(int num, KeyType* d_keys, GradType* d_grads,
                           int len);

  int gather_multi_node_grad(int num, KeyType* d_keys, GradType* d_grads,
                             int len);

  void set_nccl_comm_and_size(const std::vector<ncclComm_t>& inner_comms,
                              const std::vector<ncclComm_t>& inter_comms,
                              int comm_size) {
    nccl_inner_comms_ = inner_comms;
    nccl_inter_comms_ = inter_comms;
    node_size_ = comm_size;
  }

96 97 98 99
  bool need_transfer(int send_id, int receive_id) {
    return ((send_id / 4 != receive_id / 4) && (send_id + 4) % 8 != receive_id);
  }

T
Thunderbrook 已提交
100 101
  // void dump_to_cpu(int index);

102 103
  int get_transfer_devid(int send_id) { return (send_id + 4) % 8; }

104 105 106 107
#endif

  void end_pass();

108
  struct Node {
109 110
    ppStream in_stream;
    ppStream out_stream;
111 112 113 114 115
    char* key_storage;
    char* val_storage;
    int sync;
    int key_bytes_len;
    int val_bytes_len;
116
    int dev_num;
117 118 119 120 121 122
  };

  struct Path {
    std::vector<Node> nodes_;
  };

123 124 125 126 127 128
  struct CopyTask {
    Path* path;
    int step;
    CopyTask(Path* path_, int step_) : path(path_), step(step_) {}
  };

129 130 131 132 133 134 135
  struct LocalStorage {
    LocalStorage() {}
    void init(int size, int dev_id) {
      place_ = platform::CUDAPlace(dev_id);
      alloc(size, true);
    }

136
    void alloc(size_t size, bool force = false) {
137 138 139
      if (force || size > all_keys_mem->size()) {
        all_keys_mem.reset();
        all_grads_mem.reset();
140 141
        all_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        all_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
142 143 144 145 146 147
        all_keys = reinterpret_cast<KeyType*>(all_keys_mem->ptr());
        all_grads = reinterpret_cast<GradType*>(all_grads_mem->ptr());
      }
      if (force || size > local_keys_mem->size()) {
        local_keys_mem.reset();
        local_grads_mem.reset();
148 149
        local_keys_mem = memory::Alloc(place_, size * sizeof(KeyType));
        local_grads_mem = memory::Alloc(place_, size * sizeof(GradType));
150 151 152 153 154
        local_keys = reinterpret_cast<KeyType*>(local_keys_mem->ptr());
        local_grads = reinterpret_cast<GradType*>(local_grads_mem->ptr());
      }
    }

155
#if defined(PADDLE_WITH_CUDA)
156
    platform::CUDAPlace place_;
157 158 159
#elif defined(PADDLE_WITH_XPU_KP)
    platform::XPUPlace place_;
#endif
160 161 162 163 164 165 166 167 168 169 170
    std::shared_ptr<memory::Allocation> all_keys_mem;
    std::shared_ptr<memory::Allocation> all_grads_mem;
    KeyType* all_keys;
    GradType* all_grads;

    std::shared_ptr<memory::Allocation> local_keys_mem;
    std::shared_ptr<memory::Allocation> local_grads_mem;
    KeyType* local_keys;
    GradType* local_grads;
  };

171
  void init_path();
T
Thunderbrook 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  template <typename StreamType>
  void sync_stream(const StreamType& stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_wait(stream));
#endif
  }

  template <typename StreamType>
  void create_stream(StreamType* stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamCreate(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_create(stream));
#endif
  }

  template <typename StreamType>
  void destroy_stream(StreamType stream) {
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamDestroy(stream));
#elif defined(PADDLE_WITH_XPU_KP)
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_stream_destroy(stream));
#endif
  }

T
Thunderbrook 已提交
200 201
  void create_storage(int start_index, int end_index, int keylen, int vallen);
  void destroy_storage(int start_index, int end_index);
202 203 204 205
  void walk_to_dest(int start_index, int gpu_num, int* h_left, int* h_right,
                    KeyType* src_key, GradType* src_val);
  void walk_to_src(int start_index, int gpu_num, int* h_left, int* h_right,
                   ValType* src_val);
T
Thunderbrook 已提交
206

S
seemingwang 已提交
207
 protected:
T
Thunderbrook 已提交
208 209 210
  using Table = HashTable<KeyType, ValType>;
  std::vector<Table*> tables_;
  std::shared_ptr<HeterPsResource> resource_;
211
  std::vector<std::vector<Path>> path_;
S
seemingwang 已提交
212 213 214 215
  float load_factor_{0.75};
  int block_size_{256};

 private:
216
  std::unique_ptr<HeterCommKernel> heter_comm_kernel_;
217
  std::vector<LocalStorage> storage_;
S
seemingwang 已提交
218
  int topo_aware_{0};
219
  int feanum_{1800 * 2048};
T
Thunderbrook 已提交
220
  int multi_node_{0};
221 222 223
  int node_size_;

#if defined(PADDLE_WITH_CUDA)
224 225
  std::vector<ncclComm_t> nccl_inner_comms_;
  std::vector<ncclComm_t> nccl_inter_comms_;
T
Thunderbrook 已提交
226
  std::vector<std::shared_ptr<cub::CachingDeviceAllocator>> allocators_;
227
#endif
T
Thunderbrook 已提交
228 229 230 231
};

}  // end namespace framework
}  // end namespace paddle
T
Thunderbrook 已提交
232
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h"
T
Thunderbrook 已提交
233
#endif