analysis_predictor.cc 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
N
nhzlx 已提交
20
#include <fstream>
21
#include <memory>
22
#include <set>
23
#include <string>
24
#include <utility>
25
#include <vector>
26

27
#include "paddle/fluid/extension/include/ext_op_meta_info.h"
28
#include "paddle/fluid/framework/feed_fetch_method.h"
29
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/ir/pass.h"
32
#include "paddle/fluid/framework/naive_executor.h"
33
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/framework/var_type_traits.h"
35
#include "paddle/fluid/framework/version.h"
36
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
38
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
39
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
40
#include "paddle/fluid/inference/utils/io_utils.h"
41
#include "paddle/fluid/inference/utils/singleton.h"
42
#include "paddle/fluid/memory/memcpy.h"
43
#include "paddle/fluid/platform/cpu_helper.h"
44
#include "paddle/fluid/platform/device_context.h"
45
#include "paddle/fluid/platform/gpu_info.h"
46
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
47 48
#include "paddle/fluid/platform/profiler.h"

49 50 51 52
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

53 54 55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
57 58
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
59
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
60 61
#endif

62 63
namespace paddle {

N
nhzlx 已提交
64
using inference::Singleton;
N
nhzlx 已提交
65
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
66
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
67 68
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
69
#endif
70

71 72 73 74
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
75 76
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
77 78 79 80 81 82
    return true;
  }
  return false;
}
}  // namespace

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
111 112 113 114
  } else if (platform::is_gpu_place(place)) {
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
115
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
116 117 118
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
119
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
120 121 122 123 124 125 126
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
127 128 129 130 131 132 133 134 135 136 137 138
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    auto dst_xpu_place = BOOST_GET_CONST(platform::XPUPlace, place);
    memory::Copy(dst_xpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
139 140 141 142 143 144 145 146 147 148
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
149
bool AnalysisPredictor::Init(
150 151
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
152
  VLOG(3) << "Predictor::init()";
153 154
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
155 156
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
157
    platform::EnableProfiler(tracking_device);
158
  } else {
159 160
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
161 162
  }

163
  // no matter with or without MKLDNN
L
luotao1 已提交
164
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
165

166 167 168 169 170 171 172 173 174 175 176 177 178
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
179
  }
180 181 182 183 184 185 186 187 188

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
189
  if (parent_scope) {
190 191
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
192 193
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
194
    scope_ = parent_scope;
195
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
196
  } else {
197
    paddle::framework::InitDevices();
W
Wilber 已提交
198 199
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
200
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
201
  }
202 203 204 205 206
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
207 208
  if (!program) {
    if (!LoadProgramDesc()) return false;
209 210 211 212 213 214 215 216 217
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

218 219 220 221
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
222
  } else {
223 224
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
225 226
    inference_program_ = program;
  }
M
Michal Gallus 已提交
227

228 229 230 231 232
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
233
  if (config_.use_gpu()) {
234 235 236
    PADDLE_ENFORCE_EQ(config_.use_xpu(), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
237
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
238
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
239 240 241 242 243 244 245 246
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
247
  } else if (config_.use_xpu()) {
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
W
Wilber 已提交
271 272 273 274 275 276 277 278
  } else if (config_.use_npu()) {
#ifdef PADDLE_WITH_ASCEND_CL
    place_ = paddle::platform::NPUPlace(config_.npu_device_id());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use NPU forward propagation, but Paddle was not compiled "
        "with WITH_ASCEND_CL."));
#endif
279 280 281 282 283 284
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
    std::shared_ptr<framework::ProgramDesc> inference_program, int block,
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
      DisablePrepareDataOpt(inference_program, blockID,
                            disable_opt || pre_disable_opt);
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
318 319 320
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
321 322 323
  }
}

324
bool AnalysisPredictor::PrepareExecutor() {
W
wenbin 已提交
325 326
  DisablePrepareDataOpt(inference_program_, 0, false);

327
  executor_->Prepare(sub_scope_, *inference_program_, 0,
328
                     config_.use_feed_fetch_ops_);
329

330 331 332
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
333

334 335 336
  return true;
}

337 338
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
339 340 341 342 343 344 345 346 347 348 349 350
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
351
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
352 353 354
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
355 356 357
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
358 359
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
360 361 362
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
363 364 365
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
366
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
367
  }
368 369 370
  platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
      config_.mkldnn_cache_capacity_);

371 372 373 374 375 376 377
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
378 379 380 381 382 383 384 385
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
386 387 388
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
389 390 391 392
  }
#endif
}

393 394 395
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
396
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
397 398 399
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
400
  VLOG(3) << "Predictor::predict";
401 402 403 404
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
405 406
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
407 408
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
409
    return false;
410
  }
M
Michal Gallus 已提交
411

412 413 414
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
415

416 417 418 419
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
420
  }
Y
Yan Chunwei 已提交
421

M
minqiyang 已提交
422
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
423

Y
Yan Chunwei 已提交
424 425 426 427 428
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
429 430 431
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
432
  tensor_array_batch_cleaner_.ResetNoTensorVars();
433 434 435 436

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
437 438
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
439
#endif
440
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
441 442 443 444
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
445
#endif
446 447
  return true;
}
448

449 450
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
451
  VLOG(3) << "Predictor::set_feed";
452 453 454 455 456 457 458 459 460 461
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
462 463
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
464 465 466
      return false;
    }
    int idx = -1;
467
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
468 469
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
470 471
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
472 473
      }
      idx = feed_names_[name];
474
    } else {
475
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
476
    }
477
    framework::SetFeedVariable(scope, *input, "feed", idx);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
504
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
505 506
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
507
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
508 509 510 511 512
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
513
    framework::FetchType &fetch_var =
514
        framework::GetFetchVariable(*scope, "fetch", idx);
515
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
516 517
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
518
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
519
    if (type == framework::proto::VarType::FP32) {
520 521
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
522
    } else if (type == framework::proto::VarType::INT64) {
523 524
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
525 526 527
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
528
    } else {
529
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
530 531
    }
  }
Y
Yan Chunwei 已提交
532 533
  return true;
}
534

535
void AnalysisPredictor::PrepareArgument() {
536
  argument_.SetUseGPU(config_.use_gpu());
537
  argument_.SetUseFcPadding(config_.use_fc_padding());
538
  argument_.SetGPUDeviceId(config_.gpu_device_id());
539
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
540
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
541
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
542
  // Analyze inference_program
543
  argument_.SetPredictorID(predictor_id_);
544
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
545 546
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
547
  } else {
548 549 550 551 552 553
    PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or param_file should be set."));
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
554
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
555

556 557
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
558
  }
559

560
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
561
    LOG(INFO) << "TensorRT subgraph engine is enabled";
562 563 564
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
565
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
566
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
567 568
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
569
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
570
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
571
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
572
    argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
573 574 575
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
576
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
577 578 579 580 581
    argument_.SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_.SetTensorRtTunedDynamicShape(
        config_.tuned_tensorrt_dynamic_shape());
    argument_.SetTensorRtAllowBuildAtRuntime(
        config_.trt_allow_build_at_runtime());
W
Wojciech Uss 已提交
582
  }
583

D
denglin-github 已提交
584 585 586 587 588 589
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

石晓伟 已提交
590
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
591 592
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
593 594 595
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
596 597 598
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
599 600 601 602 603
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
石晓伟 已提交
604 605 606
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

607
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
608
    LOG(INFO) << "MKLDNN is enabled";
609 610 611
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

612 613 614 615 616 617 618 619
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
620 621 622 623
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
624 625
#endif

626
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
627 628 629 630
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
631
  argument_.SetDisableLogs(config_.glog_info_disabled());
632
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
633
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
634
  argument_.SetScopeNotOwned(scope_.get());
635 636 637 638 639
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
640 641
  Analyzer().Run(&argument_);

642 643 644
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
645 646
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
647
  inference_program_.reset(
648
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
649 650 651 652
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
653
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
654
}
655 656

template <>
657 658
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
659 660
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
661 662 663 664
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
665
  VLOG(3) << "create AnalysisConfig";
666 667 668 669
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
670

671 672 673 674
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
675
                 []() { inference::RegisterAllCustomOperator(); });
676

677
  if (config.use_gpu()) {
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
702

703 704 705 706 707 708 709 710
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

W
Wilber 已提交
711 712 713 714 715 716 717
// TODO(wilber): jetson tx2 may fail to run the model due to insufficient memory
// under the native_best_fit strategy. Modify the default allocation strategy to
// auto_growth. todo, find a more appropriate way to solve the problem.
#ifdef WITH_NV_JETSON
      gflags.push_back("--allocator_strategy=auto_growth");
#endif

718 719 720 721 722 723 724 725 726
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
742 743 744 745 746 747
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
748 749 750 751
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
752 753
  // Each config can only be used for one predictor.
  config.SetInValid();
754 755 756 757 758 759 760
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
761 762
    return nullptr;
  }
763

G
Gabor Buella 已提交
764
  return predictor;
765 766
}

767 768 769 770 771 772 773 774 775 776 777 778
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

779
void AnalysisPredictor::PrepareFeedFetch() {
780 781 782
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
783
  CreateFeedFetchVar(sub_scope_);
784 785
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
786
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
787 788 789 790 791
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
792
      idx2feeds_[idx] = op->Output("Out")[0];
793
    } else if (op->Type() == "fetch") {
794
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
795 796
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
797
      }
Y
Yan Chunwei 已提交
798
      fetches_[idx] = op;
N
nhzlx 已提交
799
      idx2fetches_[idx] = op->Input("X")[0];
800 801 802 803
    }
  }
}

804
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
805 806
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
807
  auto *var = scope->Var("feed");
808
  var->GetMutable<framework::FeedList>();
809
  var = scope->Var("fetch");
810
  var->GetMutable<framework::FetchList>();
811 812
}

N
nhzlx 已提交
813 814 815 816 817 818 819 820
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

821 822 823 824 825 826
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
827 828
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
829 830 831 832 833
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
834 835 836 837 838 839 840 841
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

842 843
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
844 845 846 847 848
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "The variable named %s is not found in the scope of the exector.",
          name));
849 850 851 852
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
853 854
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
855
  } else if (platform::is_xpu_place(place_)) {
856 857 858 859 860 861 862 863 864 865 866
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
867 868 869
  } else if (platform::is_npu_place(place_)) {
    auto npu_place = BOOST_GET_CONST(platform::NPUPlace, place_);
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
N
nhzlx 已提交
870
  } else {
871
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
872 873
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
874 875 876 877 878
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
879 880 881 882 883
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "he variable named %s is not found in the scope of the exector.",
          name));
884 885 886 887
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
888 889
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
890
  } else if (platform::is_xpu_place(place_)) {
891 892 893 894 895 896 897 898 899 900 901
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
902 903 904
  } else if (platform::is_npu_place(place_)) {
    auto npu_place = BOOST_GET_CONST(platform::NPUPlace, place_);
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
N
nhzlx 已提交
905
  } else {
906
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
907 908
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
909 910 911 912
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
913
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
914 915 916 917 918 919 920 921 922 923 924 925
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif

926
  executor_->Run();
927 928 929 930 931

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
932
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
933
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
934
  tensor_array_batch_cleaner_.ResetTensorArray();
935 936 937 938

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
939 940 941
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
942
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
943 944 945 946 947
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
948 949 950
  return true;
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto gpu_place = BOOST_GET_CONST(paddle::platform::CUDAPlace, place_);
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
    cudaStreamSynchronize(dev_ctx->stream());
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
    if (!var->IsType<framework::LoDTensor>()) {
      continue;
    }
    framework::DDim dim = var->Get<framework::LoDTensor>().dims();
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
  for (auto it : shape_info_) {
    auto name = it.first;
    auto shapes = it.second;

    std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
    std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

    auto ShapeMaxFreq = [](const std::map<int32_t, int32_t> &m) -> int32_t {
      std::vector<std::pair<int32_t, int32_t>> counter;
      for (auto &it : m) counter.push_back(it);
      std::sort(
          counter.begin(), counter.end(),
          [](std::pair<int32_t, int32_t> &a, std::pair<int32_t, int32_t> &b) {
            return a.second > b.second;
          });
      return counter[0].first;
    };

    for (size_t d = 0; d < shapes[0].size(); ++d) {
      std::map<int32_t, int32_t> counter;
      for (size_t i = 0; i < shapes.size(); ++i) {
        counter[shapes[i][d]] += 1;
        if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
        if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
      }
      opt_shape[d] = ShapeMaxFreq(counter);
    }

    min_shapes[name] = min_shape;
    max_shapes[name] = max_shape;
    opt_shapes[name] = opt_shape;
  }

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes, max_shapes, opt_shapes);
}

1023 1024
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
1025
  std::string filename;
1026 1027 1028
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
1029 1030 1031
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
1032
    filename = config_.prog_file();
1033
  } else {
1034
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
1035 1036 1037 1038
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
1039
    LOG(ERROR) << string::Sprintf(
1040 1041
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
1042 1043
    return false;
  }
1044 1045 1046

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
1047
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
1048 1049 1050
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
1051 1052 1053 1054 1055
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
1056 1057 1058 1059 1060 1061 1062 1063
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
1064
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
1065
  }
1066 1067 1068 1069 1070 1071
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
1072 1073
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

1095
      if (!config_.params_file().empty()) {
1096 1097 1098 1099 1100 1101
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
1102
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
1103 1104 1105 1106 1107
        op->CheckAttrs();
      }
    }
  }

1108
  if (!config_.params_file().empty()) {
1109 1110 1111 1112 1113 1114
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
1115
    op->SetAttr("file_path", {config_.params_file()});
1116 1117 1118 1119
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
1120
  framework::NaiveExecutor e(place_);
1121 1122 1123 1124
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

1125 1126
  return true;
}
1127

1128 1129 1130 1131 1132
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1152
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1153
bool AnalysisPredictor::SaveTrtCalibToDisk() {
1154 1155 1156
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1157 1158 1159
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
1160 1161
      std::string engine_name = BOOST_GET_CONST(
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1162
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1163 1164 1165 1166
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1167 1168
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1169
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1170
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1171 1172
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1173 1174 1175
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1176

N
nhzlx 已提交
1177
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1178 1179 1180
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1181

N
nhzlx 已提交
1182 1183 1184 1185 1186
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1187
      std::string calibration_table_data_path =
N
nhzlx 已提交
1188 1189 1190 1191
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1192 1193 1194 1195 1196

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1197 1198 1199 1200
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1201
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1202 1203
  return true;
}
N
nhzlx 已提交
1204
#endif
N
nhzlx 已提交
1205

1206
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1207
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1208
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1209 1210
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1211 1212
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1213
#endif
1214
  if (config_.with_profile_) {
1215 1216 1217 1218 1219 1220
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1221

1222 1223 1224 1225 1226 1227
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1228

1229 1230 1231 1232
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }

1233
  memory::Release(place_);
1234 1235
}

1236
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1237
  std::lock_guard<std::mutex> lk(clone_mutex_);
1238 1239 1240 1241 1242
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

1243
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1244 1245 1246
  return inference_program_->Proto()->SerializeAsString();
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1286
template <>
1287 1288
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1289
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1290 1291
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1292 1293
}

1294
}  // namespace paddle
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1305 1306
USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten);
1307
USE_TRT_CONVERTER(matmul);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1319 1320
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1321
USE_TRT_CONVERTER(split);
1322 1323
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1324
USE_TRT_CONVERTER(leaky_relu);
1325 1326
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1327
USE_TRT_CONVERTER(group_norm);
1328
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1329 1330 1331
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1332 1333
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1334
USE_TRT_CONVERTER(slice);
1335
USE_TRT_CONVERTER(scale);
1336
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
1337
USE_TRT_CONVERTER(clip);
1338
USE_TRT_CONVERTER(gather);
1339
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
1340
USE_TRT_CONVERTER(yolo_box);
1341
USE_TRT_CONVERTER(roi_align);
1342
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
1343
USE_TRT_CONVERTER(multiclass_nms);
1344
USE_TRT_CONVERTER(nearest_interp);
W
Wangzheee 已提交
1345
USE_TRT_CONVERTER(reshape);
1346 1347
USE_TRT_CONVERTER(reduce_sum);
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
1348
USE_TRT_CONVERTER(reduce_mean);
W
wenbin 已提交
1349
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
1350 1351
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
1352
#endif
W
Wilber 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
1368
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
1369 1370 1371 1372 1373 1374 1375
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
1376
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1391 1392
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer