analysis_predictor.cc 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/extension/include/ext_op_meta_info.h"
25
#include "paddle/fluid/framework/feed_fetch_method.h"
26
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
28
#include "paddle/fluid/framework/ir/pass.h"
29
#include "paddle/fluid/framework/naive_executor.h"
30
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/var_type_traits.h"
32
#include "paddle/fluid/framework/version.h"
33
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
35
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
36
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
37
#include "paddle/fluid/inference/utils/singleton.h"
38
#include "paddle/fluid/memory/memcpy.h"
39
#include "paddle/fluid/platform/cpu_helper.h"
40
#include "paddle/fluid/platform/device_context.h"
41
#include "paddle/fluid/platform/gpu_info.h"
42
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
43 44
#include "paddle/fluid/platform/profiler.h"

45 46 47 48
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

49 50 51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
53 54
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
55
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
56 57
#endif

58 59
namespace paddle {

N
nhzlx 已提交
60
using inference::Singleton;
N
nhzlx 已提交
61
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
62
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
63 64
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
65
#endif
66

67 68 69 70
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
71 72
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
73 74 75 76 77 78
    return true;
  }
  return false;
}
}  // namespace

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
107 108 109 110
  } else if (platform::is_gpu_place(place)) {
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
111
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
112 113 114
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
115
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
116 117 118 119 120 121 122
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
123 124 125 126 127 128 129 130 131 132 133 134
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    auto dst_xpu_place = BOOST_GET_CONST(platform::XPUPlace, place);
    memory::Copy(dst_xpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
135 136 137 138 139 140 141 142 143 144
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
145
bool AnalysisPredictor::Init(
146 147
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
148
  VLOG(3) << "Predictor::init()";
149 150
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
151 152
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
153
    platform::EnableProfiler(tracking_device);
154 155 156
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
157 158
  }

159
  // no matter with or without MKLDNN
L
luotao1 已提交
160
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
161

162 163 164 165 166 167 168 169 170 171 172 173 174
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
175
  }
176 177 178 179 180 181 182 183 184

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
185
  if (parent_scope) {
186 187
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
188 189
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
190
    scope_ = parent_scope;
191
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
192
  } else {
193
    paddle::framework::InitDevices();
W
Wilber 已提交
194 195
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
196
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
197
  }
198 199 200 201 202
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
203 204
  if (!program) {
    if (!LoadProgramDesc()) return false;
205 206 207 208 209 210 211 212 213
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

214 215 216 217
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
218
  } else {
219 220
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
221 222
    inference_program_ = program;
  }
M
Michal Gallus 已提交
223

224 225 226 227 228
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
229
  if (config_.use_gpu()) {
230 231 232
    PADDLE_ENFORCE_EQ(config_.use_xpu(), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
233
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
234
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
235 236 237 238 239 240 241 242
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
243
  } else if (config_.use_xpu()) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
267 268 269 270 271 272 273 274
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
275
                     config_.use_feed_fetch_ops_);
276

277 278 279
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
280

281 282 283
  return true;
}

284 285
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
286 287 288 289 290 291 292 293 294 295 296 297
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
298
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
299 300 301
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
302 303 304 305
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
306 307 308
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
309 310 311
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
312 313 314
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
315
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
316 317 318 319 320 321 322 323
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
324 325 326 327 328 329 330 331
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
332 333 334 335
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
336 337 338 339
  }
#endif
}

340 341 342
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
343
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
344 345 346
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
347
  VLOG(3) << "Predictor::predict";
348 349 350 351
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
352 353
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
354 355
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
356
    return false;
357
  }
M
Michal Gallus 已提交
358

359 360 361
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
362

363 364 365 366
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
367
  }
Y
Yan Chunwei 已提交
368

M
minqiyang 已提交
369
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
370

Y
Yan Chunwei 已提交
371 372 373 374 375
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
376 377 378
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
379
  tensor_array_batch_cleaner_.ResetNoTensorVars();
380 381 382 383

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
384 385
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
386
#endif
387
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
388 389 390 391
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
392
#endif
393 394
  return true;
}
395

396 397
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
398
  VLOG(3) << "Predictor::set_feed";
399 400 401 402 403 404 405 406 407 408
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
409 410
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
411 412 413
      return false;
    }
    int idx = -1;
414
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
415 416
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
417 418
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
419 420
      }
      idx = feed_names_[name];
421
    } else {
422
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
423
    }
424
    framework::SetFeedVariable(scope, *input, "feed", idx);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
451
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
452 453
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
454
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
455 456 457 458 459
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
460
    framework::FetchType &fetch_var =
461
        framework::GetFetchVariable(*scope, "fetch", idx);
462
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
463 464
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
465
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
466
    if (type == framework::proto::VarType::FP32) {
467 468
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
469
    } else if (type == framework::proto::VarType::INT64) {
470 471
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
472 473 474
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
475
    } else {
476
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
477 478
    }
  }
Y
Yan Chunwei 已提交
479 480
  return true;
}
481

482
void AnalysisPredictor::PrepareArgument() {
483
  argument_.SetUseGPU(config_.use_gpu());
484
  argument_.SetUseFcPadding(config_.use_fc_padding());
485
  argument_.SetGPUDeviceId(config_.gpu_device_id());
486
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
487
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
488
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
489
  // Analyze inference_program
490
  argument_.SetPredictorID(predictor_id_);
491
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
492 493
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
494
  } else {
495 496 497 498 499 500
    PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or param_file should be set."));
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
501
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
502

503 504
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
505
  }
506

507
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
508
    LOG(INFO) << "TensorRT subgraph engine is enabled";
509 510 511
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
512
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
513
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
514 515
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
516
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
517
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
518
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
519
    argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
520 521 522
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
523
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
524
  }
525

D
denglin-github 已提交
526 527 528 529 530 531
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
    argument_.SetUseDlnne(true);
    argument_.SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
  }

石晓伟 已提交
532
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
533 534
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
535 536 537
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
538 539 540
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
W
Wilber 已提交
541 542 543 544 545
    argument_.SetXpuLocked(config_.xpu_locked_);
    argument_.SetXpuAutotune(config_.xpu_autotune_);
    argument_.SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_.SetXpuPrecision(config_.xpu_precision_);
    argument_.SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
石晓伟 已提交
546 547 548
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

549
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
550
    LOG(INFO) << "MKLDNN is enabled";
551 552 553
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

554 555 556 557 558 559 560 561
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
562 563 564 565
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
566 567
#endif

568
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
569 570 571 572
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
573
  argument_.SetDisableLogs(config_.glog_info_disabled());
574
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
575
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
576
  argument_.SetScopeNotOwned(scope_.get());
577 578 579 580 581
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
582 583
  Analyzer().Run(&argument_);

584 585 586
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
587 588
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
589
  inference_program_.reset(
590
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
591 592 593 594
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
595
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
596
}
597 598

template <>
599 600
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
601 602
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
603 604 605 606
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
607
  VLOG(3) << "create AnalysisConfig";
608 609 610 611
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
612

613 614 615 616
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
617
                 []() { inference::RegisterAllCustomOperator(); });
618

619
  if (config.use_gpu()) {
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
644

645 646 647 648 649 650 651 652
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

W
Wilber 已提交
653 654 655 656 657 658 659
// TODO(wilber): jetson tx2 may fail to run the model due to insufficient memory
// under the native_best_fit strategy. Modify the default allocation strategy to
// auto_growth. todo, find a more appropriate way to solve the problem.
#ifdef WITH_NV_JETSON
      gflags.push_back("--allocator_strategy=auto_growth");
#endif

660 661 662 663 664 665 666 667 668
      // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
      // allocator when multi-stream is enabled.
      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
684 685 686 687 688 689
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
690 691 692 693
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
694 695
  // Each config can only be used for one predictor.
  config.SetInValid();
696 697 698 699 700 701 702
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
703 704
    return nullptr;
  }
705

G
Gabor Buella 已提交
706
  return predictor;
707 708
}

709 710 711 712 713 714 715 716 717 718 719 720
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

721
void AnalysisPredictor::PrepareFeedFetch() {
722 723 724
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
725
  CreateFeedFetchVar(sub_scope_);
726 727
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
728
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
729 730 731 732 733
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
734
      idx2feeds_[idx] = op->Output("Out")[0];
735
    } else if (op->Type() == "fetch") {
736
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
737 738
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
739
      }
Y
Yan Chunwei 已提交
740
      fetches_[idx] = op;
N
nhzlx 已提交
741
      idx2fetches_[idx] = op->Input("X")[0];
742 743 744 745
    }
  }
}

746
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
747 748
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
749
  auto *var = scope->Var("feed");
750
  var->GetMutable<framework::FeedList>();
751
  var = scope->Var("fetch");
752
  var->GetMutable<framework::FetchList>();
753 754
}

N
nhzlx 已提交
755 756 757 758 759 760 761 762
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

763 764 765 766 767 768
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
769 770
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
771 772 773 774 775
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
776 777 778 779 780 781 782 783
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

784 785
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
786 787 788 789 790
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "The variable named %s is not found in the scope of the exector.",
          name));
791 792 793 794
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
795 796
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
797
  } else if (platform::is_xpu_place(place_)) {
798 799 800 801 802 803 804 805 806 807 808
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
N
nhzlx 已提交
809
  } else {
810
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
811 812
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
813 814 815 816 817
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
818 819 820 821 822
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "he variable named %s is not found in the scope of the exector.",
          name));
823 824 825 826
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
827 828
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
829
  } else if (platform::is_xpu_place(place_)) {
830 831 832 833 834 835 836 837 838 839 840
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
      auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
N
nhzlx 已提交
841
  } else {
842
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
843 844
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
845 846 847 848
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
849
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
850 851 852 853 854 855 856 857 858 859 860 861
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif

862
  executor_->Run();
Y
Yan Chunwei 已提交
863
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
864
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
865
  tensor_array_batch_cleaner_.ResetTensorArray();
866 867 868 869

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
870 871 872
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
873
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
874 875 876 877 878
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
879 880 881 882 883
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
884
  std::string filename;
885 886 887
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
888 889 890
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
891
    filename = config_.prog_file();
892
  } else {
893
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
894 895 896 897
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
898
    LOG(ERROR) << string::Sprintf(
899 900
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
901 902
    return false;
  }
903 904 905

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
906
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
907 908 909
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
910 911 912 913 914
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
915 916 917 918 919 920 921 922
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
923
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
924
  }
925 926 927 928 929 930
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
931 932
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

954
      if (!config_.params_file().empty()) {
955 956 957 958 959 960
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
961
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
962 963 964 965 966
        op->CheckAttrs();
      }
    }
  }

967
  if (!config_.params_file().empty()) {
968 969 970 971 972 973
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
974
    op->SetAttr("file_path", {config_.params_file()});
975 976 977 978
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
979
  framework::NaiveExecutor e(place_);
980 981 982 983
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

984 985
  return true;
}
986

987 988 989 990 991
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
1011
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1012
bool AnalysisPredictor::SaveTrtCalibToDisk() {
1013 1014 1015
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
1016 1017 1018
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
1019 1020
      std::string engine_name = BOOST_GET_CONST(
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
1021
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
1022 1023 1024 1025
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
1026 1027
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
1028
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
1029
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
1030 1031
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
1032 1033 1034
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
1035

N
nhzlx 已提交
1036
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
1037 1038 1039
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
1040

N
nhzlx 已提交
1041 1042 1043 1044 1045
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
1046
      std::string calibration_table_data_path =
N
nhzlx 已提交
1047 1048 1049 1050
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1051 1052 1053 1054 1055

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1056 1057 1058 1059
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1060
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1061 1062
  return true;
}
N
nhzlx 已提交
1063
#endif
N
nhzlx 已提交
1064

1065
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1066
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1067
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1068 1069
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1070 1071
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1072
#endif
1073
  if (config_.with_profile_) {
1074 1075 1076 1077 1078 1079
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1080

1081 1082 1083 1084 1085 1086
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1087 1088

  memory::Release(place_);
1089 1090
}

1091
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1092
  std::lock_guard<std::mutex> lk(clone_mutex_);
1093 1094 1095 1096 1097
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

1098
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1099 1100 1101
  return inference_program_->Proto()->SerializeAsString();
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1141
template <>
1142 1143
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1144
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1145 1146
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1147 1148
}

1149
}  // namespace paddle
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1160 1161
USE_TRT_CONVERTER(transpose);
USE_TRT_CONVERTER(flatten);
1162
USE_TRT_CONVERTER(matmul);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1174 1175
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1176
USE_TRT_CONVERTER(split);
1177 1178
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1179
USE_TRT_CONVERTER(leaky_relu);
1180 1181
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1182
USE_TRT_CONVERTER(group_norm);
1183
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1184 1185 1186
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1187 1188
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1189
USE_TRT_CONVERTER(slice);
1190
USE_TRT_CONVERTER(scale);
1191
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
1192
USE_TRT_CONVERTER(clip);
1193
USE_TRT_CONVERTER(gather);
1194
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
1195
USE_TRT_CONVERTER(yolo_box);
1196
USE_TRT_CONVERTER(roi_align);
1197
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
1198
USE_TRT_CONVERTER(multiclass_nms);
1199
USE_TRT_CONVERTER(nearest_interp);
1200
#endif
W
Wilber 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
1216
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
1217 1218 1219 1220 1221 1222 1223
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
1224
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1239 1240
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer