tensor_util.cc 47.6 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

15 16
#include "paddle/fluid/framework/tensor_util.h"

C
chengduoZH 已提交
17 18
#include <algorithm>
#include <limits>
C
chengduo 已提交
19
#include <memory>
20
#include <string>
C
chengduo 已提交
21
#include <utility>
C
chengduoZH 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/data_type.h"
26
#include "paddle/fluid/platform/complex.h"
27
#include "paddle/fluid/platform/profiler/event_tracing.h"
28
#include "paddle/phi/core/dense_tensor.h"
29

30
#ifdef PADDLE_WITH_MKLDNN
31
#include "dnnl_debug.h"  // NOLINT
32
#endif
Y
Yang Yu 已提交
33 34 35

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
36

37
template <typename TENSOR>
38 39 40 41
void TensorCopyImpl(const TENSOR& src,
                    const platform::Place& dst_place,
                    const platform::DeviceContext& ctx,
                    TENSOR* dst) {
42 43
  if (&src == dst) {
    auto src_copy = src;
44
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
45 46 47
    return;
  }

M
minqiyang 已提交
48 49
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
50 51 52 53
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
54
  auto src_ptr = src.data();
55
#ifdef PADDLE_WITH_MKLDNN
56
  dst->set_mem_desc(src.mem_desc());
57 58 59 60
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
61 62
          ? dst->mutable_data(dst_place, src.dtype(), src.memory_size())
          : dst->mutable_data(dst_place, src.dtype());
63
#else
64
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
65
#endif
66
  dst->set_layout(src.layout());
67 68 69 70 71
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
72
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
73

74 75 76
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
77
                  : src.numel() * framework::DataTypeSize(src.dtype());
78
#else
79
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
80
#endif
Y
Yi Wang 已提交
81 82

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
83
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
Y
Yi Wang 已提交
84
  }
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_custom_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
#endif
108 109 110
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
111
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
112 113
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
114
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
115 116 117 118 119 120 121
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
122
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
123 124 125 126 127
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
128 129 130 131 132 133
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
134
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
135 136 137
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
138 139
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
140
    phi::DenseTensor npu_pinned_tensor;
141 142
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
143
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.dtype());
144
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);
145 146 147

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
148 149 150 151 152
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
153 154 155 156 157 158 159 160
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
161
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
162 163 164
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
165 166 167 168 169 170 171 172 173 174
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
175
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
176
  }
W
WangXi 已提交
177 178
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
179 180
    auto src_npu_pinned_place = src_place;
    auto dst_npu_place = dst_place;
W
WangXi 已提交
181
    auto ctx_place = ctx.GetPlace();
182 183 184 185 186 187 188
    PADDLE_ENFORCE_EQ(
        platform::is_npu_place(ctx_place),
        true,
        platform::errors::PreconditionNotMet(
            "Device context place mismatch. When copying phi::DenseTensor "
            "data from NPU Pinned memory to NPU memory, current "
            "device context place should be NPU."));
189
    auto ctx_npu_place = ctx_place;
190 191
    PADDLE_ENFORCE_EQ(dst_npu_place,
                      ctx_npu_place,
W
WangXi 已提交
192 193 194 195
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
196 197
                          dst_npu_place.device,
                          ctx_npu_place.device));
W
WangXi 已提交
198 199
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
200 201
    memory::Copy(
        dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size, stream);
W
WangXi 已提交
202 203 204
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
205 206
    auto src_npu_place = src_place;
    auto dst_npu_pinned_place = dst_place;
W
WangXi 已提交
207
    auto ctx_place = ctx.GetPlace();
208 209 210 211 212 213 214
    PADDLE_ENFORCE_EQ(
        platform::is_npu_place(ctx_place),
        true,
        platform::errors::PreconditionNotMet(
            "Device context place mismatch. When copying phi::DenseTensor "
            "data from NPU memory to NPU Pinned memory, current "
            "device context place should be NPU."));
215
    auto ctx_npu_place = ctx_place;
216 217
    PADDLE_ENFORCE_EQ(src_place,
                      ctx_npu_place,
W
WangXi 已提交
218 219 220 221
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
222 223
                          src_npu_place.device,
                          ctx_npu_place.device));
W
WangXi 已提交
224 225
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
226 227
    memory::Copy(
        dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size, stream);
W
WangXi 已提交
228
  }
229 230 231 232 233
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
234
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
235 236
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
237
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
238
  }
239
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
240
           platform::is_cpu_place(dst_place)) {
241
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
242 243 244
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
245
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
246 247 248
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
249 250
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
Y
Yi Wang 已提交
251
    auto ctx_place = ctx.GetPlace();
252
    PADDLE_ENFORCE_EQ(
253 254
        platform::is_gpu_place(ctx_place),
        true,
255 256 257
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
258
    auto ctx_gpu_place = ctx_place;
259 260
    PADDLE_ENFORCE_EQ(src_gpu_place,
                      ctx_gpu_place,
261 262 263
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
264 265
                          src_gpu_place,
                          ctx_gpu_place));
L
Leo Chen 已提交
266
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
267
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
268 269 270
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
271 272
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
273
    auto ctx_place = ctx.GetPlace();
274
    PADDLE_ENFORCE_EQ(
275 276
        platform::is_gpu_place(ctx_place),
        true,
277 278 279
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
280
    auto ctx_gpu_place = ctx_place;
281 282
    PADDLE_ENFORCE_EQ(dst_gpu_place,
                      ctx_gpu_place,
283 284 285
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
286 287
                          dst_gpu_place,
                          ctx_gpu_place));
L
Leo Chen 已提交
288
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
289
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
290 291 292
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
293 294
    auto src_gpu_place = src_place;
    auto dst_cuda_pinned_place = dst_place;
295
    auto ctx_place = ctx.GetPlace();
296 297 298 299 300 301 302
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place),
        true,
        platform::errors::PreconditionNotMet(
            "Device context place mismatch. When copying phi::DenseTensor "
            "data from GPU memory to CUDA Pinned memory, current "
            "device context place should be GPU."));
303
    auto ctx_gpu_place = ctx_place;
304 305
    PADDLE_ENFORCE_EQ(src_gpu_place,
                      ctx_gpu_place,
306 307 308 309
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
310 311
                          src_gpu_place.device,
                          ctx_gpu_place.device));
L
Leo Chen 已提交
312
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
313 314
    memory::Copy(
        dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
315 316 317
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
318 319
    auto src_cuda_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
320
    auto ctx_place = ctx.GetPlace();
321 322 323 324 325 326 327
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place),
        true,
        platform::errors::PreconditionNotMet(
            "Device context place mismatch. When copying phi::DenseTensor "
            "data from CUDA Pinned memory to GPU memory, current "
            "device context place should be GPU."));
328
    auto ctx_gpu_place = ctx_place;
329 330
    PADDLE_ENFORCE_EQ(dst_gpu_place,
                      ctx_gpu_place,
331 332 333 334
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
335 336
                          dst_gpu_place.device,
                          ctx_gpu_place.device));
L
Leo Chen 已提交
337
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
338 339
    memory::Copy(
        dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size, stream);
340 341 342
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
343 344
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
345
    auto ctx_place = ctx.GetPlace();
346
    PADDLE_ENFORCE_EQ(
347 348
        platform::is_gpu_place(ctx_place),
        true,
349 350 351
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
L
Leo Chen 已提交
352
    auto stream = reinterpret_cast<const phi::GPUContext&>(ctx).stream();
C
chengduo 已提交
353
    if (platform::is_same_place(src_place, dst_place)) {
354 355
      memory::Copy(
          dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
356 357
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
358 359
        memory::Copy(
            dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
360
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
361
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
362
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
363 364
        memory::Copy(
            dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
365
      } else {
366 367
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
368 369
      }
    }
370 371
  }
  else {  // NOLINT
372 373
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
374 375
  }
#endif
376 377 378
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
379 380
    auto src_mlu_place = src_place;
    auto dst_cpu_place = dst_place;
381 382 383 384 385 386
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
387 388
    auto src_cpu_place = src_place;
    auto dst_mlu_place = dst_place;
389 390 391 392 393 394
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
395 396
    auto src_mlu_place = src_place;
    auto dst_mlu_place = dst_place;
397 398 399 400 401 402 403 404 405
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
429 430
}

431
template <typename TENSOR>
432 433
void TensorCopyImpl(const TENSOR& src,
                    const platform::Place& dst_place,
434
                    TENSOR* dst) {
Y
Yi Wang 已提交
435 436
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
437
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
438 439
      platform::is_mlu_place(dst_place) ||
      platform::is_custom_place(dst_place)) {
Y
Yi Wang 已提交
440
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
441 442
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
443
  }
444 445 446
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

447
void TensorCopy(const phi::DenseTensor& src,
448
                const platform::Place& dst_place,
449 450
                phi::DenseTensor* dst) {
  TensorCopyImpl<phi::DenseTensor>(src, dst_place, dst);
451
}
452
void TensorCopy(const phi::DenseTensor& src,
453 454
                const platform::Place& dst_place,
                const platform::DeviceContext& ctx,
455 456
                phi::DenseTensor* dst) {
  TensorCopyImpl<phi::DenseTensor>(src, dst_place, ctx, dst);
457
}
Y
Yi Wang 已提交
458

459
void TensorCopySync(const phi::DenseTensor& src,
460
                    const platform::Place& dst_place,
461
                    phi::DenseTensor* dst) {
462 463 464 465 466 467
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
468 469
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
470 471 472
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
473 474 475
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
476
  auto src_place = src.place();
477
  auto src_ptr = src.data();
478
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
479
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
480 481 482 483 484 485 486

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

487
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
F
fengjiayi 已提交
488
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
489
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
F
fengjiayi 已提交
490
  }
491 492 493 494
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {     /* custom_device -> cpu*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
495
  }                                                // NOLINT
496 497 498
  else if (platform::is_cpu_place(src_place) &&    // NOLINT
           platform::is_custom_place(dst_place)) { /* cpu -> custom_device*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
499
  }                                                 // NOLINT
500 501 502 503 504 505 506 507 508 509 510
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_custom_place(
               dst_place)) { /* custom_device -> custom_device*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
511 512 513
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
514
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
515
  }                                              // NOLINT
J
jianghaicheng 已提交
516 517
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
518
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
519
  }                                              // NOLINT
J
jianghaicheng 已提交
520 521
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
522 523 524 525 526
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
527 528 529
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
    platform::XPUPlace xpu_dst_place = dst_place;
    platform::XPUPlace xpu_src_place = src_place;
530 531 532 533
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
A
Allen Guo 已提交
534
  }       // NOLINT
J
jianghaicheng 已提交
535
  else {  // NOLINT
536 537 538 539
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
540 541 542
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
543
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
544 545 546
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
547
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
548 549 550 551 552 553 554 555
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
556
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
557 558 559 560 561 562
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
563
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
564 565
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
566
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
567
  }
568
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
569
           platform::is_cpu_place(dst_place)) {
570
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
571 572 573
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
574
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
575 576 577
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
578
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
579 580 581
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
582 583
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
F
fengjiayi 已提交
584
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
585 586 587
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
588 589
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
590
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
591 592 593
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
594 595
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
596
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
597 598 599
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
600 601
    auto src_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
602 603
    memory::Copy(
        dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size, nullptr);
604 605
  }
  else {  // NOLINT
606 607
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
608 609
  }
#endif
610 611 612
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
613
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
614 615 616
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
617
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
618 619 620 621 622 623 624 625
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
626
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
627 628 629 630 631 632
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
656 657
}

658
void TensorToStream(std::ostream& os,
659
                    const phi::DenseTensor& tensor,
Y
Yi Wang 已提交
660 661 662 663 664 665 666 667 668
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
669
    desc.set_data_type(framework::TransToProtoVarType(tensor.dtype()));
670
    auto dims = phi::vectorize(tensor.dims());
Y
Yi Wang 已提交
671 672 673 674 675 676 677 678 679
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
680
    uint64_t size = tensor.numel() * framework::DataTypeSize(tensor.dtype());
Y
yuyang18 已提交
681

682
    auto* data_ptr = tensor.data();
683 684
    PADDLE_ENFORCE_LT(size,
                      (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
685 686
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
687
    if (platform::is_gpu_place(tensor.place())) {
688
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
689 690
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
L
Leo Chen 已提交
691
      auto& gpu_dev_ctx = static_cast<const phi::GPUContext&>(dev_ctx);
Y
Yi Wang 已提交
692 693 694 695
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
696 697 698 699 700
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
Y
Yi Wang 已提交
701 702 703 704 705 706 707
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
708 709
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
710 711 712 713 714 715 716 717 718 719 720
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
721 722 723 724 725
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write);
726 727 728 729 730 731 732 733
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
734 735 736 737 738 739 740 741 742 743 744
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
745 746 747 748 749
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
750 751 752 753 754 755 756 757 758
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
759 760 761 762 763 764 765 766 767 768 769
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
770 771 772 773 774
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
775 776 777 778 779 780 781 782 783
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
784 785 786 787 788 789 790 791 792 793 794
#endif
    } else if (platform::is_custom_place(tensor.place())) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& custom_device_context =
          static_cast<const platform::CustomDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
795 796 797 798 799
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
800 801 802 803 804 805 806 807 808 809
                     custom_device_context.stream());
        custom_device_context.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported when not compiled with "
          "CustomDevice"));
Y
Yi Wang 已提交
810 811 812 813 814 815 816 817 818
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
819
  DeserializedDataFunctor(void** buf,
820
                          phi::DenseTensor* tensor,
Y
Yi Wang 已提交
821 822 823 824
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
825
  void apply() {
Y
Yi Wang 已提交
826 827 828 829
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
830
  phi::DenseTensor* tensor_;
Y
Yi Wang 已提交
831 832 833
  platform::Place place_;
};

834
void TensorFromStream(std::istream& is,
835
                      phi::DenseTensor* tensor,
T
tangwei12 已提交
836
                      const platform::DeviceContext& dev_ctx,
837 838
                      const size_t& seek,
                      const std::vector<int64_t>& shape) {
T
tangwei12 已提交
839 840 841 842
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
843 844
      version,
      0U,
T
tangwei12 已提交
845 846 847 848 849 850 851 852 853 854 855 856
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
857 858
        desc.ParseFromArray(buf.get(), size),
        true,
T
tangwei12 已提交
859 860 861
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
862
    tensor->Resize(phi::make_ddim(shape));
T
tangwei12 已提交
863 864 865 866
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
L
Leo Chen 已提交
867
    phi::CPUContext ctx;
T
tangwei12 已提交
868
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
869
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
870
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
871
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
872 873
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
874
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
875
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
876
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
877
      phi::DenseTensor cpu_tensor;
878
      cpu_tensor.Resize(phi::make_ddim(shape));
T
tangwei12 已提交
879 880 881 882 883 884
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
885 886
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
887 888
        dev_ctx.Wait();
      }
T
tangwei12 已提交
889
#else
890 891 892
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
893
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
894 895
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
896 897 898
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
899 900 901
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
902
      }
T
tangwei12 已提交
903 904 905 906 907 908 909 910 911 912
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

913
void TensorFromStream(std::istream& is,
914
                      phi::DenseTensor* tensor,
Y
Yi Wang 已提交
915 916 917
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
918
  PADDLE_ENFORCE_EQ(
919 920
      version,
      0U,
T
tangwei12 已提交
921 922 923
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
924 925 926
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
Z
zlsh80826 已提交
927
    int32_t size = -1;
Y
Yi Wang 已提交
928
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
929
    PADDLE_ENFORCE_EQ(
930 931
        is.good(),
        true,
932
        platform::errors::Unavailable("Cannot read tensor desc size"));
933 934 935 936
    PADDLE_ENFORCE_GE(size,
                      0,
                      platform::errors::InvalidArgument(
                          "phi::DenseTensor desc size should >= 0"));
Y
Yi Wang 已提交
937 938
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
939
    PADDLE_ENFORCE_EQ(
940 941
        desc.ParseFromArray(buf.get(), size),
        true,
T
tangwei12 已提交
942
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
943 944 945 946 947
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
948
    tensor->Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
949
    void* buf;
L
Leo Chen 已提交
950
    phi::CPUContext ctx;
Y
Yu Yang 已提交
951
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
952
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
953
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
954
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
955 956
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
957
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
958
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
959
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
960
      phi::DenseTensor cpu_tensor;
961
      cpu_tensor.Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
962 963 964
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
965
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
966 967
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
968 969
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
970 971
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
972
#else
973 974 975
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
976
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
977 978
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
979 980 981
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
982
      } else if (platform::is_npu_place(dev_ctx.GetPlace())) {
983 984
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
985 986 987
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CutomPlace is not supported when not compiled with CustomDevice"));
988
      }
Y
Yi Wang 已提交
989 990 991 992 993
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
994
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
995 996 997 998
    }
  }
}

6
633WHU 已提交
999
// get tensor data point by DLDataType
1000
void* GetDstPtrByDLDataType(DLDataType type,
1001
                            phi::DenseTensor* dst,
6
633WHU 已提交
1002 1003
                            const platform::Place& dst_place) {
  // vector types not currently supported
1004 1005
  PADDLE_ENFORCE_LE(type.lanes,
                    1,
1006 1007
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1008 1009 1010 1011 1012 1013 1014

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1015 1016
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1017 1018
          type.code,
          type.bits));
6
633WHU 已提交
1019 1020 1021 1022 1023 1024
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1025 1026 1027
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1028 1029
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1030 1031
          type.code,
          type.bits));
6
633WHU 已提交
1032 1033 1034 1035 1036
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1037 1038
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1039 1040
          type.code,
          type.bits));
6
633WHU 已提交
1041 1042 1043 1044 1045
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1046 1047 1048 1049 1050
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1051 1052
          type.code,
          type.bits));
S
Siming Dai 已提交
1053 1054 1055 1056
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1057 1058
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1059 1060
          type.code,
          type.bits));
6
633WHU 已提交
1061
    default:
1062 1063
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1064 1065 1066
  }
}

1067
void TensorFromDLPack(const ::DLTensor& dl_tensor, phi::DenseTensor* dst) {
6
633WHU 已提交
1068 1069 1070 1071
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
1072 1073
  std::copy(dl_tensor.shape,
            dl_tensor.shape + dl_tensor.ndim,
6
633WHU 已提交
1074 1075
            std::back_inserter(vec));

1076
  framework::DDim vddim = phi::make_ddim(vec);
6
633WHU 已提交
1077 1078 1079 1080 1081 1082

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
1083
  auto size = phi::product(vddim) * type.bits / 8;
6
633WHU 已提交
1084

S
Siming Dai 已提交
1085
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1086 1087
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1088
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1089
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1090
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1091
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1092
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1093
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1094 1095
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
L
Leo Chen 已提交
1096 1097 1098 1099 1100 1101
    memory::Copy(dst_place,
                 dst_ptr,
                 src_place,
                 src_ptr,
                 size,
                 reinterpret_cast<const phi::GPUContext&>(*ctx).stream());
6
633WHU 已提交
1102 1103
  }
#endif
1104 1105 1106
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1107 1108
}

1109
template <typename T>
1110
std::string format_tensor(const phi::DenseTensor& tensor) {
1111 1112 1113 1114
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1115
template <typename T>
1116
std::ostream& print_tensor(std::ostream& os, const phi::DenseTensor& tensor) {
1117 1118 1119
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1120
  os << "  - data: [";
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1135 1136 1137 1138 1139 1140
    }
  }
  os << "]";
  return os;
}

1141
template <>
1142
std::ostream& print_tensor<paddle::platform::complex<float>>(
1143
    std::ostream& os, const phi::DenseTensor& tensor) {
1144
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1145 1146 1147 1148
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1149
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1150
    for (int j = 1; j < element_num; ++j) {
1151 1152
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1153 1154 1155 1156 1157 1158 1159
    }
  }
  os << "]";
  return os;
}

template <>
1160
std::ostream& print_tensor<paddle::platform::complex<double>>(
1161
    std::ostream& os, const phi::DenseTensor& tensor) {
1162
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1163 1164 1165 1166
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1167
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1168
    for (int j = 1; j < element_num; ++j) {
1169 1170
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1171 1172 1173 1174 1175 1176
    }
  }
  os << "]";
  return os;
}

1177
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
1178 1179
  // NOTE(xiongkun):
  // https://stackoverflow.com/questions/5195512/namespaces-and-operator-resolution
1180
  // if we don't redefine, the operator << of phi / framework LoD is not found.
1181
  paddle::string::operator<<(os, lod);
1182 1183 1184
  return os;
}

1185 1186 1187
}  // namespace framework
}  // namespace paddle

1188
namespace phi {
1189

1190 1191 1192 1193 1194
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  paddle::string::operator<<(os, lod);
  return os;
}

1195
std::ostream& operator<<(std::ostream& os, const phi::DenseTensor& t) {
1196 1197 1198 1199
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1200 1201
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
1202 1203
  os << "  - layout: " << paddle::framework::DataLayoutToString(t.layout())
     << "\n";
1204

1205 1206 1207 1208 1209
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1210
  DenseTensor tensor;
1211
  tensor.Resize(t.dims());
1212
  if (paddle::platform::is_cpu_place(t.place())) {
1213 1214
    tensor.ShareDataWith(t);
  } else {
1215 1216 1217 1218
    paddle::platform::CPUPlace place;
    paddle::framework::TensorCopy(t, place, &tensor);
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
1219 1220 1221 1222
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

1223 1224 1225 1226 1227 1228 1229 1230
#define PrintTensorCallback(cpp_type, proto_type)                 \
  do {                                                            \
    if (paddle::framework::TransToProtoVarType(tensor.dtype()) == \
        proto_type) {                                             \
      os << "  - dtype: " << proto_type << "\n";                  \
      paddle::framework::print_tensor<cpp_type>(os, tensor);      \
      return os;                                                  \
    }                                                             \
1231 1232 1233 1234 1235 1236
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}
1237
}  // namespace phi