tensor_util.cc 58.4 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

C
chengduoZH 已提交
15 16
#include <algorithm>
#include <limits>
C
chengduo 已提交
17
#include <memory>
18
#include <string>
C
chengduo 已提交
19
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/convert_utils.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/data_type.h"
S
Steffy-zxf 已提交
24
#include "paddle/fluid/framework/tensor_util.h"
25
#include "paddle/fluid/platform/complex.h"
26
#include "paddle/fluid/platform/profiler/event_tracing.h"
27

28
#include "paddle/phi/core/dense_tensor.h"
29

30
#ifdef PADDLE_WITH_MKLDNN
31
#include "dnnl_debug.h"  // NOLINT
32
#endif
Y
Yang Yu 已提交
33 34 35

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
36

37 38 39
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    const platform::DeviceContext& ctx, TENSOR* dst) {
40 41
  if (&src == dst) {
    auto src_copy = src;
42
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
43 44 45
    return;
  }

M
minqiyang 已提交
46 47
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
48 49 50 51
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
52
  auto src_ptr = src.data();
53
#ifdef PADDLE_WITH_MKLDNN
54
  dst->set_mem_desc(src.mem_desc());
55 56 57 58
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
59 60
          ? dst->mutable_data(dst_place, src.dtype(), src.memory_size())
          : dst->mutable_data(dst_place, src.dtype());
61
#else
62
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
63
#endif
64
  dst->set_layout(src.layout());
65 66 67 68 69
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
70
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
71

72 73 74
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
75
                  : src.numel() * framework::DataTypeSize(src.dtype());
76
#else
77
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
78
#endif
Y
Yi Wang 已提交
79 80

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
81
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
Y
Yi Wang 已提交
82
  }
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_custom_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
#endif
106 107 108
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
109
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
110 111
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
112
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
113 114 115 116 117 118 119
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
120
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
121 122 123 124 125
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
126 127 128 129 130 131
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
132
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
133 134 135
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
136 137 138 139 140
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
141
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.dtype());
142
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);
143 144 145

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
146
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
147 148 149 150 151 152 153 154
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
155
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
156 157 158
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
159 160 161 162 163 164 165 166 167 168
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
169
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
170
  }
W
WangXi 已提交
171 172
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
173 174
    auto src_npu_pinned_place = src_place;
    auto dst_npu_place = dst_place;
W
WangXi 已提交
175 176 177 178 179 180
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
181
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
    PADDLE_ENFORCE_EQ(dst_npu_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
                          dst_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size,
                 stream);
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
195 196
    auto src_npu_place = src_place;
    auto dst_npu_pinned_place = dst_place;
W
WangXi 已提交
197 198 199 200 201 202
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
203
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
204 205 206 207 208 209 210 211 212 213 214
    PADDLE_ENFORCE_EQ(src_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
                          src_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size,
                 stream);
  }
215 216 217 218 219
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
220
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
221 222
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
223
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
224
  }
225
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
226
           platform::is_cpu_place(dst_place)) {
227
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
228 229 230
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
231
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
232 233 234
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
235 236
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
Y
Yi Wang 已提交
237
    auto ctx_place = ctx.GetPlace();
238 239 240 241 242
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
243
    auto ctx_gpu_place = ctx_place;
244 245 246 247 248
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
                          src_gpu_place, ctx_gpu_place));
249
    auto stream =
F
fengjiayi 已提交
250
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
251
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
252 253 254
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
255 256
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
257
    auto ctx_place = ctx.GetPlace();
258 259 260 261 262
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
263
    auto ctx_gpu_place = ctx_place;
264 265 266 267 268
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
                          dst_gpu_place, ctx_gpu_place));
269
    auto stream =
F
fengjiayi 已提交
270
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
271
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
272 273 274
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
275 276
    auto src_gpu_place = src_place;
    auto dst_cuda_pinned_place = dst_place;
277 278 279 280 281 282
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
283
    auto ctx_gpu_place = ctx_place;
284 285 286 287 288 289 290 291 292 293
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
                          src_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size,
                 stream);
294 295 296
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
297 298
    auto src_cuda_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
299 300 301 302 303 304
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
305
    auto ctx_gpu_place = ctx_place;
306 307 308 309 310 311 312 313 314 315
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
                          dst_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size,
                 stream);
316 317 318
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
319 320
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
321
    auto ctx_place = ctx.GetPlace();
322 323 324 325 326
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
327
    auto stream =
F
fengjiayi 已提交
328
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
329 330 331 332 333 334 335
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
336
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
337
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
338
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
339 340 341
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
342 343
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
344 345
      }
    }
346 347
  }
  else {  // NOLINT
348 349
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
350 351
  }
#endif
352 353 354
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
355 356
    auto src_mlu_place = src_place;
    auto dst_cpu_place = dst_place;
357 358 359 360 361 362
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
363 364
    auto src_cpu_place = src_place;
    auto dst_mlu_place = dst_place;
365 366 367 368 369 370
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
371 372
    auto src_mlu_place = src_place;
    auto dst_mlu_place = dst_place;
373 374 375 376 377 378 379 380 381
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
405 406
}

407 408 409
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    TENSOR* dst) {
Y
Yi Wang 已提交
410 411
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
412
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
413 414
      platform::is_mlu_place(dst_place) ||
      platform::is_custom_place(dst_place)) {
Y
Yi Wang 已提交
415
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
416 417
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
418
  }
419 420 421 422 423 424 425 426 427 428 429
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
Y
Yi Wang 已提交
430

F
fengjiayi 已提交
431 432
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
433 434 435 436 437 438
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
439 440
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
441 442 443
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
444 445 446
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
447
  auto src_place = src.place();
448
  auto src_ptr = src.data();
449
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
450
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
451 452 453 454 455 456 457

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

458
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
F
fengjiayi 已提交
459
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
460
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
F
fengjiayi 已提交
461
  }
462 463 464 465
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {     /* custom_device -> cpu*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
466
  }                                                // NOLINT
467 468 469
  else if (platform::is_cpu_place(src_place) &&    // NOLINT
           platform::is_custom_place(dst_place)) { /* cpu -> custom_device*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
470
  }                                                 // NOLINT
471 472 473 474 475 476 477 478 479 480 481
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_custom_place(
               dst_place)) { /* custom_device -> custom_device*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
482 483 484
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
485
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
486
  }                                              // NOLINT
J
jianghaicheng 已提交
487 488
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
489
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
490
  }                                              // NOLINT
J
jianghaicheng 已提交
491 492
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
493 494 495 496 497
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
498 499 500
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
    platform::XPUPlace xpu_dst_place = dst_place;
    platform::XPUPlace xpu_src_place = src_place;
501 502 503 504
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
A
Allen Guo 已提交
505
  }       // NOLINT
J
jianghaicheng 已提交
506
  else {  // NOLINT
507 508 509 510
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
511 512 513
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
514
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
515 516 517
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
518
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
519 520 521 522 523 524 525 526
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
527
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
528 529 530 531 532 533
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
534
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
535 536
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
537
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
538
  }
539
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
540
           platform::is_cpu_place(dst_place)) {
541
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
542 543 544
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
545
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
546 547 548
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
549
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
550 551 552
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
553 554
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
F
fengjiayi 已提交
555
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
556 557 558
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
559 560
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
561
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
562 563 564
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
565 566
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
567
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
568 569 570
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
571 572
    auto src_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
W
Wu Yi 已提交
573 574
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
575 576
  }
  else {  // NOLINT
577 578
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
579 580
  }
#endif
581 582 583
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
584
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
585 586 587
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
588
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
589 590 591 592 593 594 595 596
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
597
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
598 599 600 601 602 603
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
627 628
}

Y
Yang Yu 已提交
629 630 631 632 633 634 635 636 637 638 639 640
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
641
  void apply() const {
Y
Yang Yu 已提交
642 643
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
644
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
645 646 647 648 649 650 651
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
652 653 654
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AnyDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
Y
Yang Yu 已提交
655 656 657
}

template <typename Predicate>
658 659
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
660 661 662
  const framework::Tensor& tensor_;
  Predicate predicate_;

663 664 665 666 667 668 669 670 671 672 673 674 675
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

676
 public:
Y
Yang Yu 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

690 691 692 693 694
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
695 696 697 698 699 700 701
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
702 703
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
704
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
705 706
  }

707 708 709 710 711 712
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
713 714 715 716 717
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
718

719 720 721 722 723
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
724 725 726 727
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
728 729 730 731 732

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
733 734 735 736 737 738 739

  bool GetResult(const framework::Tensor& out,
                 const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(platform::errors::Unimplemented("Not supported on place (%s) ",
                                                 custom_dev));
    return false;
  }
Y
Yang Yu 已提交
740 741
};

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
763 764 765 766 767 768 769
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

770 771 772 773 774 775 776 777
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AllDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
inline void AllImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
800 801 802
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AllDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
J
Jack Zhou 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
}

template <typename Predicate>
class AllOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AllOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
inline void All(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
834
struct ContainsNANPredicate {
Y
Yang Yu 已提交
835 836 837
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
838
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
839 840 841 842
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
843 844
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
845 846 847
  return Any(tensor, predicate);
}

848 849 850 851 852 853
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
854 855 856 857 858 859
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
860
struct ContainsInfPredicate {
Y
Yang Yu 已提交
861 862 863
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
864
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
865 866 867 868
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
869 870
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
871 872 873
  return Any(tensor, predicate);
}

874 875 876 877 878 879
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
880 881 882 883 884 885
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

886 887 888 889 890 891 892 893 894 895
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

896
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
897
template <typename T>
J
Jack Zhou 已提交
898 899
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
900 901 902 903 904 905 906 907 908 909 910 911 912 913
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

914 915 916
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
917 918 919
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
920

921
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
922
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
923
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
924 925 926 927 928 929 930 931 932 933
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
934 935 936
#endif
  }

937 938 939 940
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
941 942 943 944
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

945
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
946 947 948 949 950 951 952 953
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
954 955 956 957
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
958 959 960 961 962 963 964 965
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
966
  }
967 968 969 970 971 972 973 974 975 976 977 978

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
979 980 981 982 983

  void VisitorImpl(const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("CustomPlace is not supported"));
  }
984 985 986 987 988 989 990 991 992 993 994
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
995 996 997 998 999 1000 1001 1002 1003
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
1014
    desc.set_data_type(framework::TransToProtoVarType(tensor.dtype()));
1015
    auto dims = phi::vectorize(tensor.dims());
Y
Yi Wang 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
1025
    uint64_t size = tensor.numel() * framework::DataTypeSize(tensor.dtype());
Y
yuyang18 已提交
1026

1027
    auto* data_ptr = tensor.data();
W
wanghuancoder 已提交
1028
    PADDLE_ENFORCE_LT(size, (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
1029 1030
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
1031
    if (platform::is_gpu_place(tensor.place())) {
1032
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
1033 1034 1035 1036 1037 1038 1039 1040
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1041
        memory::Copy(cpu, buf.get(), tensor.place(),
Y
Yi Wang 已提交
1042 1043 1044 1045 1046 1047 1048 1049
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
1050 1051
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1063
        memory::Copy(cpu, buf.get(), tensor.place(),
1064 1065 1066 1067 1068 1069 1070 1071 1072
                     reinterpret_cast<const void*>(data), size_to_write);
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1084
        memory::Copy(cpu, buf.get(), tensor.place(),
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
                     reinterpret_cast<const void*>(data), size_to_write,
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1106
        memory::Copy(cpu, buf.get(), tensor.place(),
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
                     reinterpret_cast<const void*>(data), size_to_write,
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
#endif
    } else if (platform::is_custom_place(tensor.place())) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& custom_device_context =
          static_cast<const platform::CustomDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(), tensor.place(),
                     reinterpret_cast<const void*>(data), size_to_write,
                     custom_device_context.stream());
        custom_device_context.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported when not compiled with "
          "CustomDevice"));
Y
Yi Wang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1154
  void apply() {
Y
Yi Wang 已提交
1155 1156 1157 1158 1159 1160 1161 1162
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
1187
    tensor->Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1188 1189 1190 1191
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
W
Wilber 已提交
1192
    platform::CPUDeviceContext ctx;
T
tangwei12 已提交
1193
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1194
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1195
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1196
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1197 1198
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1199
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1200
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1201
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
T
tangwei12 已提交
1202
      Tensor cpu_tensor;
1203
      cpu_tensor.Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1204 1205 1206 1207 1208 1209
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1210 1211
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1212 1213
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1214
#else
1215 1216 1217
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1218
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1219 1220
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1221 1222 1223
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1224 1225 1226
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1227
      }
T
tangwei12 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
1238 1239 1240 1241
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1242 1243 1244 1245 1246
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1247 1248 1249
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
Z
zlsh80826 已提交
1250
    int32_t size = -1;
Y
Yi Wang 已提交
1251
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
Z
zlsh80826 已提交
1252 1253 1254 1255
    PADDLE_ENFORCE_EQ(is.good(), true, platform::errors::Unavailable(
                                           "Cannot read tensor desc size"));
    PADDLE_ENFORCE_GE(size, 0, platform::errors::InvalidArgument(
                                   "Tensor desc size should >= 0"));
Y
Yi Wang 已提交
1256 1257
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1258 1259 1260
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1261 1262 1263 1264 1265
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
1266
    tensor->Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1267
    void* buf;
W
Wilber 已提交
1268
    platform::CPUDeviceContext ctx;
Y
Yu Yang 已提交
1269
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1270
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1271
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1272
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1273 1274
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1275
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1276
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1277
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
Y
Yi Wang 已提交
1278
      Tensor cpu_tensor;
1279
      cpu_tensor.Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1280 1281 1282
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1283
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1284 1285
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1286 1287
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1288 1289
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1290
#else
1291 1292 1293
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1294
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1295 1296
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1297 1298 1299
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1300
      } else if (platform::is_npu_place(dev_ctx.GetPlace())) {
1301 1302
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1303 1304 1305
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CutomPlace is not supported when not compiled with CustomDevice"));
1306
      }
Y
Yi Wang 已提交
1307 1308 1309 1310 1311
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1312
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1313 1314 1315 1316
    }
  }
}

6
633WHU 已提交
1317 1318 1319 1320
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
1321 1322 1323
  PADDLE_ENFORCE_LE(type.lanes, 1,
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1324 1325 1326 1327 1328 1329 1330

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1331 1332 1333
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1334 1335 1336 1337 1338 1339
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1340 1341 1342
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1343 1344 1345
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1346 1347 1348 1349 1350
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1351 1352 1353
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1354 1355 1356 1357 1358
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1369 1370 1371
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1372
    default:
1373 1374
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

1386
  framework::DDim vddim = phi::make_ddim(vec);
6
633WHU 已提交
1387 1388 1389 1390 1391 1392

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
1393
  auto size = phi::product(vddim) * type.bits / 8;
6
633WHU 已提交
1394

S
Siming Dai 已提交
1395
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1396 1397
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1398
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1399
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1400
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1401
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1402
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1403
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1404 1405 1406 1407 1408 1409 1410
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
1411 1412 1413
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1414 1415
}

1416 1417 1418 1419 1420 1421
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1422 1423 1424 1425 1426
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1427
  os << "  - data: [";
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1442 1443 1444 1445 1446 1447
    }
  }
  os << "]";
  return os;
}

1448
template <>
1449
std::ostream& print_tensor<paddle::platform::complex<float>>(
1450
    std::ostream& os, const framework::Tensor& tensor) {
1451
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1452 1453 1454 1455
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1456
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1457
    for (int j = 1; j < element_num; ++j) {
1458 1459
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1460 1461 1462 1463 1464 1465 1466
    }
  }
  os << "]";
  return os;
}

template <>
1467
std::ostream& print_tensor<paddle::platform::complex<double>>(
1468
    std::ostream& os, const framework::Tensor& tensor) {
1469
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1470 1471 1472 1473
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1474
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1475
    for (int j = 1; j < element_num; ++j) {
1476 1477
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1478 1479 1480 1481 1482 1483
    }
  }
  os << "]";
  return os;
}

1484
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
1485 1486
  // NOTE(xiongkun):
  // https://stackoverflow.com/questions/5195512/namespaces-and-operator-resolution
1487
  // if we don't redefine, the operator << of phi / framework LoD is not found.
1488
  paddle::string::operator<<(os, lod);
1489 1490 1491
  return os;
}

1492 1493 1494
}  // namespace framework
}  // namespace paddle

1495
namespace phi {
1496

1497 1498 1499 1500 1501
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  paddle::string::operator<<(os, lod);
  return os;
}

1502
std::ostream& operator<<(std::ostream& os, const phi::DenseTensor& t) {
1503 1504 1505 1506
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1507 1508
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
1509 1510
  os << "  - layout: " << paddle::framework::DataLayoutToString(t.layout())
     << "\n";
1511

1512 1513 1514 1515 1516
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1517
  DenseTensor tensor;
1518
  tensor.Resize(t.dims());
1519
  if (paddle::platform::is_cpu_place(t.place())) {
1520 1521
    tensor.ShareDataWith(t);
  } else {
1522 1523 1524 1525
    paddle::platform::CPUPlace place;
    paddle::framework::TensorCopy(t, place, &tensor);
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
1526 1527 1528 1529
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

1530 1531 1532 1533 1534 1535 1536 1537
#define PrintTensorCallback(cpp_type, proto_type)                 \
  do {                                                            \
    if (paddle::framework::TransToProtoVarType(tensor.dtype()) == \
        proto_type) {                                             \
      os << "  - dtype: " << proto_type << "\n";                  \
      paddle::framework::print_tensor<cpp_type>(os, tensor);      \
      return os;                                                  \
    }                                                             \
1538 1539 1540 1541 1542 1543
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}
1544
}  // namespace phi