communicator.h 14.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <ThreadPool.h>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <deque>
20
#include <map>
Q
Qiao Longfei 已提交
21 22
#include <memory>
#include <string>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
Q
Qiao Longfei 已提交
25
#include <utility>
Q
Qiao Longfei 已提交
26 27 28 29
#include <vector>

#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
C
Chengmo 已提交
30 31
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
Q
Qiao Longfei 已提交
32
#include "paddle/fluid/operators/distributed/rpc_common.h"
C
Chengmo 已提交
33
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Q
Qiao Longfei 已提交
34 35
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
55 56 57 58 59 60 61
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
62 63 64 65
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
66 67 68 69 70 71 72
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
73 74 75 76 77
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
78
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
79 80
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
81
    cv_.notify_one();
Q
Qiao Longfei 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
100
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
101 102
};

Q
Qiao Longfei 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
                      Scope* scope) {
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
Q
Qiao Longfei 已提交
116
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims;
Q
Qiao Longfei 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
    out_t->mutable_data<float>(dims, cpu_place);

    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    math::SetConstant<paddle::platform::CPUDeviceContext, float>
        constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<float>(0));

    // sum all vars to out
    auto result = EigenVector<float>::Flatten(*out_t);
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
      auto in = EigenVector<float>::Flatten(in_t);
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
141 142
    result.device(*cpu_ctx.eigen_device()) =
        result / static_cast<float>(vars.size());
Q
Qiao Longfei 已提交
143 144 145 146 147 148 149 150 151 152 153
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
    out_slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    auto dev_ctx = paddle::platform::CPUDeviceContext();
154 155 156
    math::scatter::MergeAverage<paddle::platform::CPUDeviceContext, float>
        merge_average;
    merge_average(dev_ctx, inputs, out_slr);
Q
Qiao Longfei 已提交
157 158 159 160 161 162 163
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
            << " dims: " << slr0.value().dims();
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
164 165
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
166 167
class Communicator {
 public:
T
tangwei12 已提交
168 169
  Communicator() {}
  virtual ~Communicator() {}
Q
Qiao Longfei 已提交
170

T
tangwei12 已提交
171 172 173
  virtual void Start() = 0;
  virtual void Stop() = 0;
  virtual bool IsRunning() { return running_; }
Q
Qiao Longfei 已提交
174

T
tangwei12 已提交
175 176
  virtual void Send(const std::string& var_name,
                    const framework::Scope& scope) = 0;
177 178 179 180 181

  virtual void Send(const std::vector<std::string>& sparse_var_names,
                    const std::vector<std::string>& sparse_var_tables,
                    const framework::Scope& scope) = 0;

T
tangwei12 已提交
182
  virtual void Recv() = 0;
Q
Qiao Longfei 已提交
183

T
tangwei12 已提交
184 185 186
  virtual void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                        const RpcCtxMap& recv_varname_to_ctx,
                        Scope* recv_scope) = 0;
187

T
tangwei12 已提交
188 189
  virtual void InitImpl(const paddle::framework::ProgramDesc& program,
                        Scope* recv_scope) = 0;
Q
Qiao Longfei 已提交
190

191 192 193 194 195 196 197
  // for geo-sgd
  virtual void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) = 0;

T
tangwei12 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
  static Communicator* GetInstance() { return communicator_.get(); }

  static std::shared_ptr<Communicator> GetInstantcePtr() {
    return communicator_;
  }

  template <typename T>
  static Communicator* InitInstance(const RpcCtxMap& send_varname_to_ctx,
                                    const RpcCtxMap& recv_varname_to_ctx,
                                    Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithRpcCtx<T>,
                   send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
    return communicator_.get();
  }

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithProgram<T>, program,
                   recv_scope);
    return communicator_.get();
  }

  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) {
    std::call_once(init_flag_, &Communicator::InitWithTranspilerInfo<T>,
                   program, training_scope, std::ref(vars_info),
                   std::ref(trainers), std::ref(geo_need_push_nums));
    return communicator_.get();
  }

T
tangwei12 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  // Init is called by InitInstance.
  template <typename T>
  static void InitWithRpcCtx(const RpcCtxMap& send_varname_to_ctx,
                             const RpcCtxMap& recv_varname_to_ctx,
                             Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(send_varname_to_ctx, recv_varname_to_ctx,
                              recv_scope);
    }
  }

  template <typename T>
  static void InitWithProgram(const paddle::framework::ProgramDesc& program,
                              Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(program, recv_scope);
    }
  }

254 255 256 257 258 259 260 261 262 263 264 265 266
  template <typename T>
  static void InitWithTranspilerInfo(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(program, training_scope, std::ref(vars_info),
                              std::ref(trainers), std::ref(geo_need_push_nums));
    }
  }

T
tangwei12 已提交
267 268 269 270 271 272
 protected:
  bool running_ = false;
  static std::shared_ptr<Communicator> communicator_;
  static std::once_flag init_flag_;
};

273
using SparseIdsMap =
C
Chengmo 已提交
274
    std::unordered_map<std::string, std::vector<std::unordered_set<int64_t>>>;
275

T
tangwei12 已提交
276 277 278 279 280 281 282 283 284 285
class AsyncCommunicator : public Communicator {
 public:
  AsyncCommunicator() {}
  ~AsyncCommunicator();
  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;
  void Recv() override;
Q
Qiao Longfei 已提交
286
  void RecvAll();
T
tangwei12 已提交
287 288 289 290 291 292 293 294

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

Q
Qiao Longfei 已提交
295 296 297
  void SendThread();
  void RecvThread();

298 299 300 301 302 303 304 305 306 307
  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

T
tangwei12 已提交
308
 private:
Q
Qiao Longfei 已提交
309 310 311
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
312 313
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
314 315
  std::unique_ptr<std::thread> send_thread_{nullptr};
  std::unique_ptr<std::thread> recv_thread_{nullptr};
Q
Qiao Longfei 已提交
316 317
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
318 319
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
320
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
Q
Qiao Longfei 已提交
321 322
};

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
class GeoSgdCommunicator : public Communicator {
 public:
  GeoSgdCommunicator() {}
  ~GeoSgdCommunicator();
  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;

  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void Recv() override;

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

 private:
  void SendThread();
  std::unordered_set<int64_t> SparseIdsMerge(
      const std::vector<SparseIdsMap>& ids_send_vec,
C
Chengmo 已提交
356
      const std::string& var_name, const std::string& splited_var_name);
357 358 359

  void SendUpdateDenseVars(const std::string& var_name);
  void SendUpdateSparseVars(const std::string& var_name,
C
Chengmo 已提交
360
                            const std::string& splited_var_name,
361
                            const std::unordered_set<int64_t>& ids_table);
C
Chengmo 已提交
362 363 364 365

  void RecvUpdateDenseVars(const std::string& var_name);
  void RecvUpdateSparseVars(const std::string& var_name,
                            const std::string& splited_var_name);
366 367 368 369 370 371 372 373 374

  void GeoSgdDenseParamInit(framework::Scope* scope_x,
                            framework::Scope* scope_y,
                            const std::string var_name);

  void GeoSgdSparseParamInit(framework::Scope* scope_x,
                             framework::Scope* scope_y,
                             const std::string var_name);

C
Chengmo 已提交
375 376 377 378 379 380 381 382
  void RpcSend(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

  void RpcRecv(const std::string& origin_var_name,
               const std::string& splited_var_name,
               const size_t& splited_var_index);

383 384 385 386 387 388 389 390 391 392 393 394 395
  const std::string VarToDeltaVar(const std::string var_name) {
    std::string delta_name = var_name;
    const std::string send_name = delta_name.append(".delta");
    return send_name;
  }

  const std::string DeltaVarToVar(const std::string var_name) {
    std::string origin_name = var_name;
    origin_name.erase(origin_name.find(".delta"), 6);
    const std::string param_name = origin_name;
    return param_name;
  }

C
Chengmo 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409
  size_t GetSplitedVarIndex(const std::string var_name,
                            const std::string splited_var_name) {
    size_t index = 0;
    for (size_t i = 0;
         i < send_varname_to_ctx_[var_name].splited_var_names.size(); i++) {
      if (send_varname_to_ctx_[var_name].splited_var_names[i] ==
          splited_var_name) {
        index = i;
        break;
      }
    }
    return index;
  }

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
 private:
  int trainer_nums_ = 1;
  int geo_need_push_nums_ = 100;
  bool is_geo_sgd_ = false;
  Scope* training_scope_;
  std::shared_ptr<Scope> delta_scope_;  // parameter local delta: recv - old
  std::shared_ptr<Scope>
      old_scope_;  // parameter local, storage the param after last recv
  std::shared_ptr<Scope> pserver_scope_;  // parameter on pserver,gloabl scope
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
  std::unordered_map<std::string, bool>
      var_list_;  // if var is sparse, using selected rows, bool=true

  std::shared_ptr<BlockingQueue<std::shared_ptr<SparseIdsMap>>>
      need_push_queue_;
  std::vector<SparseIdsMap> ids_send_vec_;

C
Chengmo 已提交
428 429
  std::unordered_map<std::string, std::vector<int64_t>> absolute_section_;

430 431
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<std::thread> send_thread_{nullptr};
C
Chengmo 已提交
432 433

  size_t need_thread_nums_{0};
434 435
};

Q
Qiao Longfei 已提交
436 437 438
}  // namespace distributed
}  // namespace operators
}  // namespace paddle