communicator.h 8.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <atomic>
Q
Qiao Longfei 已提交
18 19 20
#include <deque>
#include <memory>
#include <string>
Q
Qiao Longfei 已提交
21 22
#include <unordered_map>
#include <utility>
Q
Qiao Longfei 已提交
23 24
#include <vector>

Q
Qiao Longfei 已提交
25 26
#include <ThreadPool.h>

Q
Qiao Longfei 已提交
27 28 29
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/distributed/rpc_common.h"
Q
Qiao Longfei 已提交
30 31
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
51 52 53 54 55 56 57
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
58 59 60 61
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
62 63 64 65 66 67 68
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
69 70 71 72 73
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
74
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
75 76
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
77
    cv_.notify_one();
Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
96
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
97 98
};

Q
Qiao Longfei 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
                      Scope* scope) {
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
Q
Qiao Longfei 已提交
112
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims;
Q
Qiao Longfei 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
    out_t->mutable_data<float>(dims, cpu_place);

    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    math::SetConstant<paddle::platform::CPUDeviceContext, float>
        constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<float>(0));

    // sum all vars to out
    auto result = EigenVector<float>::Flatten(*out_t);
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
      auto in = EigenVector<float>::Flatten(in_t);
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
137 138
    result.device(*cpu_ctx.eigen_device()) =
        result / static_cast<float>(vars.size());
Q
Qiao Longfei 已提交
139 140 141 142 143 144 145 146 147 148 149
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
    out_slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    auto dev_ctx = paddle::platform::CPUDeviceContext();
150 151 152
    math::scatter::MergeAverage<paddle::platform::CPUDeviceContext, float>
        merge_average;
    merge_average(dev_ctx, inputs, out_slr);
Q
Qiao Longfei 已提交
153 154 155 156 157 158 159
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
            << " dims: " << slr0.value().dims();
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
160 161
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
162 163
class Communicator {
 public:
T
tangwei12 已提交
164 165
  Communicator() {}
  virtual ~Communicator() {}
Q
Qiao Longfei 已提交
166

T
tangwei12 已提交
167 168 169
  virtual void Start() = 0;
  virtual void Stop() = 0;
  virtual bool IsRunning() { return running_; }
Q
Qiao Longfei 已提交
170

T
tangwei12 已提交
171 172 173
  virtual void Send(const std::string& var_name,
                    const framework::Scope& scope) = 0;
  virtual void Recv() = 0;
Q
Qiao Longfei 已提交
174

T
tangwei12 已提交
175 176 177
  virtual void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                        const RpcCtxMap& recv_varname_to_ctx,
                        Scope* recv_scope) = 0;
178

T
tangwei12 已提交
179 180
  virtual void InitImpl(const paddle::framework::ProgramDesc& program,
                        Scope* recv_scope) = 0;
Q
Qiao Longfei 已提交
181

T
tangwei12 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  static Communicator* GetInstance() { return communicator_.get(); }

  static std::shared_ptr<Communicator> GetInstantcePtr() {
    return communicator_;
  }

  template <typename T>
  static Communicator* InitInstance(const RpcCtxMap& send_varname_to_ctx,
                                    const RpcCtxMap& recv_varname_to_ctx,
                                    Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithRpcCtx<T>,
                   send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
    return communicator_.get();
  }

  // Init is called by InitInstance.
  template <typename T>
  static void InitWithRpcCtx(const RpcCtxMap& send_varname_to_ctx,
                             const RpcCtxMap& recv_varname_to_ctx,
                             Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(send_varname_to_ctx, recv_varname_to_ctx,
                              recv_scope);
    }
  }

  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithProgram<T>, program,
                   recv_scope);
    return communicator_.get();
  }

  template <typename T>
  static void InitWithProgram(const paddle::framework::ProgramDesc& program,
                              Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(program, recv_scope);
    }
  }

 protected:
  bool running_ = false;
  static std::shared_ptr<Communicator> communicator_;
  static std::once_flag init_flag_;
};

class AsyncCommunicator : public Communicator {
 public:
  AsyncCommunicator() {}
  ~AsyncCommunicator();
  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;
  void Recv() override;
Q
Qiao Longfei 已提交
242
  void RecvAll();
T
tangwei12 已提交
243 244 245 246 247 248 249 250

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

Q
Qiao Longfei 已提交
251 252 253
  void SendThread();
  void RecvThread();

T
tangwei12 已提交
254
 private:
Q
Qiao Longfei 已提交
255 256 257
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
258 259
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
260 261
  std::unique_ptr<std::thread> send_thread_{nullptr};
  std::unique_ptr<std::thread> recv_thread_{nullptr};
Q
Qiao Longfei 已提交
262 263
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
264 265
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
266
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
Q
Qiao Longfei 已提交
267 268 269 270 271
};

}  // namespace distributed
}  // namespace operators
}  // namespace paddle