prelu_op.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
11

12
#include <memory>
13
#include <string>
14 15 16 17 18
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/binary.h"
Z
zchen0211 已提交
19 20 21 22

namespace paddle {
namespace operators {

23 24
using Tensor = framework::Tensor;

J
Jacek Czaja 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
framework::OpKernelType innerGetKernelTypeForVar(
    const Tensor &tensor, const framework::OpKernelType &expected_kernel_type) {
#ifdef PADDLE_WITH_MKLDNN
  auto isOneDNNKernelChosen =
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN);
  auto isNotOneDNNTensor = (tensor.layout() != framework::DataLayout::kMKLDNN);
  auto isModelNHWC =
      (paddle::platform::MKLDNNDeviceContext::tls()
           .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC);
  // All inputs (including alpha) need shape rotating
  if (isOneDNNKernelChosen && isNotOneDNNTensor && isModelNHWC) {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::DataLayout::kNHWC);
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Z
fix  
zchen0211 已提交
45
class PReluOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
46
 public:
Z
fix  
zchen0211 已提交
47
  PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
Z
zchen0211 已提交
48 49 50 51
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

J
jerrywgz 已提交
52 53 54
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
55 56 57 58 59 60 61 62 63 64 65
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
J
jerrywgz 已提交
66
  }
J
Jacek Czaja 已提交
67 68 69 70 71 72

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    return innerGetKernelTypeForVar(tensor, expected_kernel_type);
  }
Z
zchen0211 已提交
73 74
};

Z
fix  
zchen0211 已提交
75
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
Z
zchen0211 已提交
76
 public:
Y
Yu Yang 已提交
77
  void Make() override {
Z
zchen0211 已提交
78
    AddInput("X", "The input tensor of prelu operator.");
K
kexinzhao 已提交
79 80 81 82
    AddInput("Alpha", "The alpha weight of prelu operator.");
    AddOutput("Out", "The output tensor of prelu operator.");
    AddComment(R"DOC(
PRelu Operator.
Z
zchen0211 已提交
83
The equation is:
K
kexinzhao 已提交
84 85 86 87 88 89 90
$$
f(x) =
\begin{cases}
\alpha * x, \quad  \text{if} \ x < 0 \\
x,         \qquad  \text{if} \ x >= 0
\end{cases}
$$
91
The input `X` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
92
or not. And the output shares the LoD information with input `X`.
93
There are modes:
J
jerrywgz 已提交
94 95
  all: all elements share same weight
  channel: elements in a channel share same weight
96
  element: each element has a weight
Z
zchen0211 已提交
97
)DOC");
J
jerrywgz 已提交
98 99
    AddAttr<std::string>("mode", "The mode for inputs to share weights.")
        .SetDefault("all");
100 101 102
    AddAttr<std::string>("data_format",
                         "Data format that specifies the layout of input")
        .SetDefault("NCHW");
103 104
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
C
cc 已提交
105 106
        .SetDefault(false)
        .AsExtra();
107 108 109 110
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
C
cc 已提交
111 112
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
113 114 115
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
C
cc 已提交
116 117
        .SetDefault(false)
        .AsExtra();
Z
zchen0211 已提交
118 119 120 121
  }
};

// The operator to calculate gradients of a prelu operator.
Z
fix  
zchen0211 已提交
122
class PReluGradOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
123 124 125
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

126
  void InferShape(framework::InferShapeContext *ctx) const override {
127 128 129 130
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "prelu");

J
jerrywgz 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144
    auto x_grad_name = framework::GradVarName("X");
    auto alpha_grad_name = framework::GradVarName("Alpha");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(alpha_grad_name)) {
      ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
145 146 147 148 149 150 151 152 153 154 155
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Z
zchen0211 已提交
156
  }
J
Jacek Czaja 已提交
157 158 159 160 161 162

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    return innerGetKernelTypeForVar(tensor, expected_kernel_type);
  }
Z
zchen0211 已提交
163 164
};

165 166 167 168 169 170
template <typename T>
class PReluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
171
  void Apply(GradOpPtr<T> op) const override {
172 173 174 175 176 177 178 179 180 181
    op->SetType("prelu_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Alpha", this->Input("Alpha"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Alpha"), this->InputGrad("Alpha"));
    op->SetAttrMap(this->Attrs());
  }
};

Z
zchen0211 已提交
182 183 184 185 186
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

187 188
DECLARE_INFER_SHAPE_FUNCTOR(prelu, PReluInferShapeFunctor,
                            PD_INFER_META(phi::PReluInferMeta));
189 190
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
                  ops::PReluGradOpMaker<paddle::framework::OpDesc>,
191 192
                  ops::PReluGradOpMaker<paddle::imperative::OpBase>,
                  PReluInferShapeFunctor);
193
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);