prelu_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/prelu_op.h"
13

14
#include <memory>
15
#include <string>
Z
zchen0211 已提交
16 17 18 19

namespace paddle {
namespace operators {

Z
fix  
zchen0211 已提交
20
class PReluOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
21
 public:
Z
fix  
zchen0211 已提交
22
  PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
Z
zchen0211 已提交
23 24 25 26
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

27
  void InferShape(framework::InferShapeContext *ctx) const override {
28 29 30
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput("Alpha"), "Input", "Alpha", "prelu");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "prelu");
J
jerrywgz 已提交
31 32

    auto x_dim = ctx->GetInputDim("X");
33
    std::string mode = ctx->Attrs().Get<std::string>("mode");
J
jerrywgz 已提交
34
    if (mode == "all") {
35 36 37 38 39
      PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), 1,
                        platform::errors::InvalidArgument(
                            "For mode 'all', size of weight Alpha must be one. "
                            "But recevied alpha's size: %d.",
                            product(ctx->GetInputDim("Alpha"))));
J
jerrywgz 已提交
40
    } else if (mode == "channel") {
41 42 43 44 45 46
      PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), x_dim[1],
                        platform::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[1]: %d",
                            product(ctx->GetInputDim("Alpha")), x_dim[1]));
47 48 49 50 51 52 53
      auto x_rank = x_dim.size();
      PADDLE_ENFORCE_GE(x_rank, 2,
                        platform::errors::InvalidArgument(
                            "For mode 'channel', rank of input X must be "
                            "equal or larger than 2. But recevied X's "
                            "rank: %d",
                            x_rank));
J
jerrywgz 已提交
54
    } else if (mode == "element") {
55 56 57
      auto alpha_dim = ctx->GetInputDim("Alpha");
      auto alpha_rank = alpha_dim.size();
      auto x_rank = x_dim.size();
58 59 60 61 62 63
      PADDLE_ENFORCE_GE(x_rank, 1,
                        platform::errors::InvalidArgument(
                            "For mode 'element', rank of input X must be "
                            "equal or larger than 2. But recevied X's "
                            "rank: %d",
                            x_rank));
64 65 66 67 68 69 70
      PADDLE_ENFORCE_EQ(
          alpha_rank, x_rank,
          platform::errors::InvalidArgument(
              "For mode 'element', rank of weight Alpha must be ",
              "equal to the rank of input(x). But recevied alpha's rank: %d, "
              "x's rank: %d.",
              alpha_rank, x_rank));
71 72 73 74 75 76
      size_t x_product = 1;
      size_t alpha_product = 1;
      for (int64_t i = x_rank - 1; i > 0; i--) {
        x_product *= x_dim[i];
        alpha_product *= alpha_dim[i];
      }
77 78 79 80 81 82 83
      PADDLE_ENFORCE_EQ(
          alpha_product, x_product,
          platform::errors::InvalidArgument(
              "For mode 'element', the size of weight Alpha must be "
              "equal to the size of input(x). But recevied alpha's size: %d, "
              "x's size: %d.",
              alpha_product, x_product));
J
jerrywgz 已提交
84
    } else {
85 86 87 88 89
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Attr(mode) of prelu must be one of 'all', 'channel', or 'element'. "
          "But recevied "
          "mode: '%s'.",
          mode));
J
jerrywgz 已提交
90
    }
91
    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
92
    ctx->ShareLoD("X", /*->*/ "Out");
Z
zchen0211 已提交
93
  }
J
jerrywgz 已提交
94 95 96 97

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
98 99 100 101 102 103 104 105 106 107 108
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
J
jerrywgz 已提交
109
  }
Z
zchen0211 已提交
110 111
};

Z
fix  
zchen0211 已提交
112
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
Z
zchen0211 已提交
113
 public:
Y
Yu Yang 已提交
114
  void Make() override {
Z
zchen0211 已提交
115
    AddInput("X", "The input tensor of prelu operator.");
K
kexinzhao 已提交
116 117 118 119
    AddInput("Alpha", "The alpha weight of prelu operator.");
    AddOutput("Out", "The output tensor of prelu operator.");
    AddComment(R"DOC(
PRelu Operator.
Z
zchen0211 已提交
120
The equation is:
K
kexinzhao 已提交
121 122 123 124 125 126 127
$$
f(x) =
\begin{cases}
\alpha * x, \quad  \text{if} \ x < 0 \\
x,         \qquad  \text{if} \ x >= 0
\end{cases}
$$
128
The input `X` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
129
or not. And the output shares the LoD information with input `X`.
130
There are modes:
J
jerrywgz 已提交
131 132
  all: all elements share same weight
  channel: elements in a channel share same weight
133
  element: each element has a weight
Z
zchen0211 已提交
134
)DOC");
J
jerrywgz 已提交
135 136
    AddAttr<std::string>("mode", "The mode for inputs to share weights.")
        .SetDefault("all");
137 138
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
C
cc 已提交
139 140
        .SetDefault(false)
        .AsExtra();
141 142 143 144
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
C
cc 已提交
145 146
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
147 148 149
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
C
cc 已提交
150 151
        .SetDefault(false)
        .AsExtra();
Z
zchen0211 已提交
152 153 154 155
  }
};

// The operator to calculate gradients of a prelu operator.
Z
fix  
zchen0211 已提交
156
class PReluGradOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
157 158 159
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

160
  void InferShape(framework::InferShapeContext *ctx) const override {
161 162 163 164
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "prelu");

J
jerrywgz 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178
    auto x_grad_name = framework::GradVarName("X");
    auto alpha_grad_name = framework::GradVarName("Alpha");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(alpha_grad_name)) {
      ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
179 180 181 182 183 184 185 186 187 188 189
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Z
zchen0211 已提交
190 191 192
  }
};

193 194 195 196 197 198
template <typename T>
class PReluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
199
  void Apply(GradOpPtr<T> op) const override {
200 201 202 203 204 205 206 207 208 209
    op->SetType("prelu_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Alpha", this->Input("Alpha"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Alpha"), this->InputGrad("Alpha"));
    op->SetAttrMap(this->Attrs());
  }
};

Z
zchen0211 已提交
210 211 212 213 214
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

215 216 217
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
                  ops::PReluGradOpMaker<paddle::framework::OpDesc>,
                  ops::PReluGradOpMaker<paddle::imperative::OpBase>);
218
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);
Q
QI JUN 已提交
219
REGISTER_OP_CPU_KERNEL(
220 221
    prelu, ops::PReluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
222
REGISTER_OP_CPU_KERNEL(
223 224
    prelu_grad, ops::PReluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluGradKernel<paddle::platform::CPUDeviceContext, double>);