norm_op.cc 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include <memory>
#include <string>
#include <vector>
H
hong 已提交
18
#include "paddle/fluid/framework/infershape_utils.h"
H
hong 已提交
19
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
20
#include "paddle/phi/infermeta/unary.h"
21

22 23 24 25 26
namespace paddle {
namespace operators {

class NormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
27
  void Make() override {
28 29 30 31 32 33 34 35
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddAttr<int>("axis",
                 "The axis on which to apply normalization. If axis < 0, "
                 "the dimension to normalization is rank(X) + axis. -1 is "
                 "the last dimension.");
    AddAttr<float>("epsilon",
                   "(float, default 1e-10) The epsilon value is used "
                   "to avoid division by zero.")
36
        .SetDefault(1.0e-10f);
37 38 39
    AddOutput("Norm",
              "(Tensor) A tensor saved the `sqrt(sum(x) + epsion)` will "
              "be used in backward kernel.")
40 41 42 43 44 45
        .AsIntermediate()
        .AsExtra();
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training.")
        .SetDefault(false);
46
    AddOutput("Out", "(Tensor) A tensor of the same shape as X.");
47
    AddComment(R"DOC(
48 49 50 51 52 53 54 55 56 57

Given a tensor, apply 2-normalization along the provided axis.

$$
y = \frac{x}{ \sqrt{\sum {x^2} + epsion }}
$$

where, $\sum {x^2}$ is calculated along the `axis` dimension.
        
)DOC");
58 59 60 61 62 63 64 65 66 67 68
  }
};

class NormOp : public framework::OperatorWithKernel {
  using framework::OperatorWithKernel::OperatorWithKernel;
};

class NormOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
69 70 71
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "NormOpGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Input",
                   "X@GRAD", "NormOpGrad");
72 73 74
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
75

H
hong 已提交
76 77
template <typename T>
class NormOpGradOpMaker : public framework::SingleGradOpMaker<T> {
78
 public:
H
hong 已提交
79
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
80 81

 protected:
82
  void Apply(GradOpPtr<T> op) const override {
83
    op->SetType("norm_grad");
H
hong 已提交
84 85 86
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
F
furnace 已提交
87
#ifndef PADDLE_WITH_ASCEND_CL
H
hong 已提交
88
    op->SetInput("Norm", this->Output("Norm"));
F
furnace 已提交
89 90 91
#else
    op->SetInput("Out", this->Output("Out"));
#endif
H
hong 已提交
92
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
93 94 95
  }
};

96 97 98 99
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
100 101
using CPU = paddle::platform::CPUDeviceContext;

H
hong 已提交
102 103 104
DECLARE_INFER_SHAPE_FUNCTOR(norm, NormInferShapeFunctor,
                            PD_INFER_META(phi::NormInferMeta));

105
REGISTER_OPERATOR(norm, ops::NormOp, ops::NormOpMaker,
H
hong 已提交
106
                  ops::NormOpGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
107 108
                  ops::NormOpGradOpMaker<paddle::imperative::OpBase>,
                  NormInferShapeFunctor);
109
REGISTER_OPERATOR(norm_grad, ops::NormOpGrad);