Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b1025cf5
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b1025cf5
编写于
12月 22, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add norm_op for ssd(cross channel norm)
上级
a87f4963
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
349 addition
and
0 deletion
+349
-0
paddle/operators/norm_op.cc
paddle/operators/norm_op.cc
+106
-0
paddle/operators/norm_op.cu
paddle/operators/norm_op.cu
+24
-0
paddle/operators/norm_op.h
paddle/operators/norm_op.h
+162
-0
python/paddle/v2/fluid/tests/test_norm_op.py
python/paddle/v2/fluid/tests/test_norm_op.py
+57
-0
未找到文件。
paddle/operators/norm_op.cc
0 → 100644
浏览文件 @
b1025cf5
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/norm_op.h"
namespace
paddle
{
namespace
operators
{
class
NormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
NormOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor of norm operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."
);
AddInput
(
"Scale"
,
"(Tensor) The input tensor of norm operator. "
"The format of input tensor is C * 1."
);
AddAttr
<
float
>
(
"epsilon"
,
"(float, default 1e-10) Constant "
"for numerical stability."
)
.
SetDefault
(
1.0e-10
f
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of norm operator."
"N * M."
"M = C * H * W"
);
AddComment
(
R"DOC(
"Input shape: $(N, C, H, W)$
Sclae shape: $(C, 1)$
Output shape: $(N, C, H, W)$
Where
forward
$$
[\frac {x_{1}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{2}}{\sqrt{\sum{x_{i}^{2}}}} \frac {x_{3}}{\sqrt{\sum{x_{i}^{2}}}} \cdot \cdot \cdot \frac {x_{n}}{\sqrt{\sum{x_{i}^{2}}}}]
$$
backward
$$
\frac{\frac{\mathrm{d}L }{\mathrm{d}y_{1}} - \frac {x_{1}\sum {\frac{\mathrm{d} L}{\mathrm{d} y_{j}}}x_{j}}{\sum x_{j}^{2}} }{\sqrt{\sum{x_{j}^{2}}}}
$$
)DOC"
);
}
};
class
NormOp
:
public
framework
::
OperatorWithKernel
{
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of NormOp"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of NormOp should not be null."
);
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
in_x_dims
);
}
};
class
NormOpGrad
:
public
framework
::
OperatorWithKernel
{
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Input(X@GRAD) should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
norm
,
ops
::
NormOp
,
ops
::
NormOpMaker
,
norm_grad
,
ops
::
NormOpGrad
);
REGISTER_OP_CPU_KERNEL
(
norm
,
ops
::
NormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
NormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
norm_grad
,
ops
::
NormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
NormGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/operators/norm_op.cu
0 → 100644
浏览文件 @
b1025cf5
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/norm_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
norm
,
ops
::
NormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
NormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
norm_grad
,
ops
::
NormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
NormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/operators/norm_op.h
0 → 100644
浏览文件 @
b1025cf5
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
class
NormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
framework
::
Tensor
*
in_x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
framework
::
Tensor
*
scale
=
context
.
Input
<
framework
::
Tensor
>
(
"Scale"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
T
epsilon
=
context
.
Attr
<
T
>
(
"epsilon"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
batch_size
=
in_x
->
dims
()[
0
];
int
channels
=
in_x
->
dims
()[
1
];
int
height
=
in_x
->
dims
()[
2
];
int
width
=
in_x
->
dims
()[
3
];
int
fea_len
=
height
*
width
;
auto
*
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
x
=
EigenMatrix
<
T
>::
From
(
*
in_x
,
framework
::
make_ddim
({
batch_size
,
fea_len
*
channels
}));
// get square
framework
::
Tensor
x_square
;
x_square
.
mutable_data
<
T
>
(
in_x
->
dims
(),
context
.
GetPlace
());
auto
x_square_eigen
=
EigenMatrix
<
T
>::
From
(
x_square
,
framework
::
make_ddim
({
batch_size
,
fea_len
*
channels
}));
x_square_eigen
.
device
(
*
place
)
=
x
.
square
();
auto
scale_eigen
=
EigenVector
<
T
>::
Flatten
(
*
scale
);
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
framework
::
Tensor
in_x_batch
=
in_x
->
Slice
(
n
,
n
+
1
);
auto
in_x_batch_eigen
=
EigenMatrix
<
T
>::
From
(
in_x_batch
,
framework
::
make_ddim
({
channels
,
fea_len
}));
framework
::
Tensor
x_square_batch
=
x_square
.
Slice
(
n
,
n
+
1
);
auto
x_square_batch_eigen
=
EigenMatrix
<
T
>::
From
(
x_square_batch
,
framework
::
make_ddim
({
channels
,
fea_len
}));
framework
::
Tensor
out_batch
=
out
->
Slice
(
n
,
n
+
1
);
auto
out_batch_eigen
=
EigenMatrix
<
T
>::
From
(
out_batch
,
framework
::
make_ddim
({
channels
,
fea_len
}));
framework
::
Tensor
tmp_tensor
;
tmp_tensor
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
1
,
fea_len
}),
context
.
GetPlace
());
auto
tmp
=
EigenVector
<
T
>::
Flatten
(
tmp_tensor
);
// get colsum and sqrt , inverse
auto
dim
=
Eigen
::
array
<
int
,
1
>
({{
0
}});
tmp
.
device
(
*
place
)
=
x_square_batch_eigen
.
sum
(
dim
);
tmp
.
device
(
*
place
)
=
(
tmp
+
epsilon
).
sqrt
().
inverse
();
Eigen
::
array
<
int
,
2
>
broadcast_dim_col
;
broadcast_dim_col
[
1
]
=
1
;
broadcast_dim_col
[
0
]
=
channels
;
out_batch_eigen
.
device
(
*
place
)
=
in_x_batch_eigen
*
(
tmp
.
broadcast
(
broadcast_dim_col
));
Eigen
::
array
<
int
,
2
>
broadcast_dim_row
;
broadcast_dim_row
[
1
]
=
fea_len
;
broadcast_dim_row
[
0
]
=
1
;
out_batch_eigen
.
device
(
*
place
)
=
out_batch_eigen
*
(
scale_eigen
.
broadcast
(
broadcast_dim_row
));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
NormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
framework
::
Tensor
*
in_x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
const
framework
::
Tensor
*
scale
=
context
.
Input
<
framework
::
Tensor
>
(
"Scale"
);
const
framework
::
Tensor
*
out_grad
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
T
epsilon
=
context
.
Attr
<
T
>
(
"epsilon"
);
framework
::
Tensor
*
in_x_grad
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
batch_size
=
in_x
->
dims
()[
0
];
int
channels
=
in_x
->
dims
()[
1
];
int
height
=
in_x
->
dims
()[
2
];
int
width
=
in_x
->
dims
()[
3
];
int
fea_len
=
height
*
width
;
auto
*
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
scale_eigen
=
EigenVector
<
T
>::
Flatten
(
*
scale
);
auto
x
=
EigenMatrix
<
T
>::
From
(
*
in_x
,
framework
::
make_ddim
({
batch_size
,
fea_len
*
channels
}));
// get square
framework
::
Tensor
x_square
;
x_square
.
mutable_data
<
T
>
(
in_x
->
dims
(),
context
.
GetPlace
());
auto
x_square_eigen
=
EigenMatrix
<
T
>::
From
(
x_square
,
framework
::
make_ddim
({
batch_size
,
fea_len
*
channels
}));
x_square_eigen
.
device
(
*
place
)
=
x
.
square
();
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
framework
::
Tensor
in_x_batch
=
in_x
->
Slice
(
n
,
n
+
1
);
auto
in_x_batch_eigen
=
EigenMatrix
<
T
>::
From
(
in_x_batch
,
framework
::
make_ddim
({
channels
,
fea_len
}));
framework
::
Tensor
in_g_batch
=
in_x_grad
->
Slice
(
n
,
n
+
1
);
auto
in_g_batch_eigen
=
EigenMatrix
<
T
>::
From
(
in_g_batch
,
framework
::
make_ddim
({
channels
,
fea_len
}));
framework
::
Tensor
x_square_batch
=
x_square
.
Slice
(
n
,
n
+
1
);
auto
x_square_batch_eigen
=
EigenMatrix
<
T
>::
From
(
x_square_batch
,
framework
::
make_ddim
({
channels
,
fea_len
}));
framework
::
Tensor
outg_batch
=
out_grad
->
Slice
(
n
,
n
+
1
);
auto
outg_batch_eigen
=
EigenMatrix
<
T
>::
From
(
outg_batch
,
framework
::
make_ddim
({
channels
,
fea_len
}));
framework
::
Tensor
tmp_tensor
;
tmp_tensor
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
1
,
fea_len
}),
context
.
GetPlace
());
auto
tmp_eigen
=
EigenVector
<
T
>::
Flatten
(
tmp_tensor
);
auto
dim
=
Eigen
::
array
<
int
,
1
>
({{
0
}});
tmp_eigen
.
device
(
*
place
)
=
(
in_x_batch_eigen
*
outg_batch_eigen
).
sum
(
dim
);
framework
::
Tensor
norm_tmp_tensor
;
norm_tmp_tensor
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
1
,
fea_len
}),
context
.
GetPlace
());
auto
norm_tmp_eigen
=
EigenVector
<
T
>::
Flatten
(
norm_tmp_tensor
);
norm_tmp_eigen
.
device
(
*
place
)
=
(
x_square_batch_eigen
.
sum
(
dim
)
+
epsilon
).
sqrt
();
Eigen
::
array
<
int
,
2
>
broadcast_dim_col
;
broadcast_dim_col
[
1
]
=
1
;
broadcast_dim_col
[
0
]
=
channels
;
in_g_batch_eigen
.
device
(
*
place
)
=
in_x_batch_eigen
*
tmp_eigen
.
broadcast
(
broadcast_dim_col
);
in_g_batch_eigen
.
device
(
*
place
)
=
in_g_batch_eigen
/
(
norm_tmp_eigen
*
norm_tmp_eigen
).
broadcast
(
broadcast_dim_col
);
in_g_batch_eigen
.
device
(
*
place
)
=
outg_batch_eigen
-
in_g_batch_eigen
;
// outg_batch_eigen + (in_g_batch_eigen * -1);
in_g_batch_eigen
.
device
(
*
place
)
=
in_g_batch_eigen
/
norm_tmp_eigen
.
broadcast
(
broadcast_dim_col
);
Eigen
::
array
<
int
,
2
>
broadcast_dim_row
;
broadcast_dim_row
[
1
]
=
fea_len
;
broadcast_dim_row
[
0
]
=
1
;
in_g_batch_eigen
.
device
(
*
place
)
=
in_g_batch_eigen
*
(
scale_eigen
.
broadcast
(
broadcast_dim_row
));
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/fluid/tests/test_norm_op.py
0 → 100644
浏览文件 @
b1025cf5
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
norm
(
input
,
scale
,
epsilon
):
s0
,
s1
,
s2
,
s3
=
input
.
shape
x_square
=
input
*
input
for
i
in
xrange
(
s0
):
input_batch
=
input
[
i
:
i
+
1
,
:,
:,
:]
input_batch
=
input_batch
.
reshape
(
s1
,
s2
*
s3
)
x_square_batch
=
x_square
[
i
:
i
+
1
,
:,
:,
:]
x_square_batch
=
x_square_batch
.
reshape
(
s1
,
s2
*
s3
)
square_colsum
=
x_square_batch
.
sum
(
axis
=
0
)
+
epsilon
tmp
=
pow
(
square_colsum
,
0.5
)
tmp
=
np
.
reciprocal
(
tmp
)
tmp_tile
=
np
.
tile
(
tmp
,
s1
)
tmp_tile
=
tmp_tile
.
reshape
(
s1
,
s2
*
s3
)
scale_tile
=
np
.
tile
(
scale
,
(
1
,
s2
*
s3
))
scale_tile
=
scale_tile
.
reshape
(
s1
,
s2
*
s3
)
out_batch
=
input_batch
*
tmp_tile
*
scale_tile
out_batch
=
out_batch
.
reshape
(
1
,
s1
,
s2
,
s3
)
if
i
==
0
:
out
=
out_batch
else
:
out
=
np
.
concatenate
((
out
,
out_batch
),
0
)
out
.
reshape
(
s0
,
s1
,
s2
,
s3
)
return
out
class
TestNormOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"norm"
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
scale
=
np
.
array
([
10
,
10
,
10
])
self
.
inputs
=
{
'X'
:
input
.
astype
(
'float32'
),
'Scale'
:
scale
.
astype
(
'float32'
)
}
self
.
attrs
=
{
'epsilon'
:
self
.
epsilon
}
output
=
norm
(
input
,
scale
,
self
.
epsilon
)
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
init_test_case
(
self
):
self
.
shape
=
[
1
,
3
,
2
,
2
]
self
.
epsilon
=
1e-6
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录