yolo_box_op.cc 11.2 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

H
hong 已提交
12
#include "paddle/fluid/framework/infershape_utils.h"
D
dengkaipeng 已提交
13
#include "paddle/fluid/framework/op_registry.h"
14
#include "paddle/fluid/framework/op_version_registry.h"
H
hong 已提交
15
#include "paddle/phi/infermeta/binary.h"
D
dengkaipeng 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class YoloBoxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
X
xiaoting 已提交
26 27 28 29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasInput("ImgSize"), "Input", "ImgSize", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Boxes"), "Output", "Boxes", "YoloBoxOp");
    OP_INOUT_CHECK(ctx->HasOutput("Scores"), "Output", "Scores", "YoloBoxOp");
D
dengkaipeng 已提交
30 31

    auto dim_x = ctx->GetInputDim("X");
32
    auto dim_imgsize = ctx->GetInputDim("ImgSize");
D
dengkaipeng 已提交
33 34 35
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    int anchor_num = anchors.size() / 2;
    auto class_num = ctx->Attrs().Get<int>("class_num");
36 37
    auto iou_aware = ctx->Attrs().Get<bool>("iou_aware");
    auto iou_aware_factor = ctx->Attrs().Get<float>("iou_aware_factor");
D
dengkaipeng 已提交
38

X
xiaoting 已提交
39 40 41 42
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, platform::errors::InvalidArgument(
                                           "Input(X) should be a 4-D tensor."
                                           "But received X dimension(%s)",
                                           dim_x.size()));
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    if (iou_aware) {
      PADDLE_ENFORCE_EQ(
          dim_x[1], anchor_num * (6 + class_num),
          platform::errors::InvalidArgument(
              "Input(X) dim[1] should be equal to (anchor_mask_number * (6 "
              "+ class_num)) while iou_aware is true."
              "But received dim[1](%s) != (anchor_mask_number * "
              "(6+class_num)(%s).",
              dim_x[1], anchor_num * (6 + class_num)));
      PADDLE_ENFORCE_GE(
          iou_aware_factor, 0,
          platform::errors::InvalidArgument(
              "Attr(iou_aware_factor) should greater than or equal to 0."
              "But received iou_aware_factor (%s)",
              iou_aware_factor));
      PADDLE_ENFORCE_LE(
          iou_aware_factor, 1,
          platform::errors::InvalidArgument(
              "Attr(iou_aware_factor) should less than or equal to 1."
              "But received iou_aware_factor (%s)",
              iou_aware_factor));
    } else {
      PADDLE_ENFORCE_EQ(
          dim_x[1], anchor_num * (5 + class_num),
          platform::errors::InvalidArgument(
              "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
              "+ class_num))."
              "But received dim[1](%s) != (anchor_mask_number * "
              "(5+class_num)(%s).",
              dim_x[1], anchor_num * (5 + class_num)));
    }
74
    PADDLE_ENFORCE_EQ(dim_imgsize.size(), 2,
X
xiaoting 已提交
75 76 77 78
                      platform::errors::InvalidArgument(
                          "Input(ImgSize) should be a 2-D tensor."
                          "But received Imgsize size(%s)",
                          dim_imgsize.size()));
79 80 81 82 83 84
    if ((dim_imgsize[0] > 0 && dim_x[0] > 0) || ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(
          dim_imgsize[0], dim_x[0],
          platform::errors::InvalidArgument(
              "Input(ImgSize) dim[0] and Input(X) dim[0] should be same."));
    }
X
xiaoting 已提交
85 86 87 88 89
    PADDLE_ENFORCE_EQ(
        dim_imgsize[1], 2,
        platform::errors::InvalidArgument("Input(ImgSize) dim[1] should be 2."
                                          "But received imgsize dim[1](%s).",
                                          dim_imgsize[1]));
D
dengkaipeng 已提交
90
    PADDLE_ENFORCE_GT(anchors.size(), 0,
X
xiaoting 已提交
91 92 93 94
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be greater than 0."
                          "But received anchors length(%s).",
                          anchors.size()));
D
dengkaipeng 已提交
95
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
X
xiaoting 已提交
96 97 98 99
                      platform::errors::InvalidArgument(
                          "Attr(anchors) length should be even integer."
                          "But received anchors length (%s)",
                          anchors.size()));
D
dengkaipeng 已提交
100
    PADDLE_ENFORCE_GT(class_num, 0,
X
xiaoting 已提交
101 102 103 104
                      platform::errors::InvalidArgument(
                          "Attr(class_num) should be an integer greater than 0."
                          "But received class_num (%s)",
                          class_num));
D
dengkaipeng 已提交
105

106 107 108 109 110 111
    int box_num;
    if ((dim_x[2] > 0 && dim_x[3] > 0) || ctx->IsRuntime()) {
      box_num = dim_x[2] * dim_x[3] * anchor_num;
    } else {
      box_num = -1;
    }
D
dengkaipeng 已提交
112
    std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
113
    ctx->SetOutputDim("Boxes", phi::make_ddim(dim_boxes));
D
dengkaipeng 已提交
114 115

    std::vector<int64_t> dim_scores({dim_x[0], box_num, class_num});
116
    ctx->SetOutputDim("Scores", phi::make_ddim(dim_scores));
D
dengkaipeng 已提交
117 118 119 120 121
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
122 123
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
124 125 126 127 128 129 130
  }
};

class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
131 132
             "The input tensor of YoloBox operator is a 4-D tensor with "
             "shape of [N, C, H, W]. The second dimension(C) stores "
D
dengkaipeng 已提交
133 134
             "box locations, confidence score and classification one-hot "
             "keys of each anchor box. Generally, X should be the output "
D
dengkaipeng 已提交
135
             "of YOLOv3 network.");
136 137
    AddInput("ImgSize",
             "The image size tensor of YoloBox operator, "
D
dengkaipeng 已提交
138
             "This is a 2-D tensor with shape of [N, 2]. This tensor holds "
D
dengkaipeng 已提交
139
             "height and width of each input image used for resizing output "
140
             "box in input image scale.");
D
dengkaipeng 已提交
141 142
    AddOutput("Boxes",
              "The output tensor of detection boxes of YoloBox operator, "
D
dengkaipeng 已提交
143 144
              "This is a 3-D tensor with shape of [N, M, 4], N is the "
              "batch num, M is output box number, and the 3rd dimension "
D
dengkaipeng 已提交
145 146
              "stores [xmin, ymin, xmax, ymax] coordinates of boxes.");
    AddOutput("Scores",
D
dengkaipeng 已提交
147 148 149 150
              "The output tensor of detection boxes scores of YoloBox "
              "operator, This is a 3-D tensor with shape of "
              "[N, M, :attr:`class_num`], N is the batch num, M is "
              "output box number.");
D
dengkaipeng 已提交
151 152 153 154 155 156 157 158 159 160 161 162

    AddAttr<int>("class_num", "The number of classes to predict.");
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("downsample_ratio",
                 "The downsample ratio from network input to YoloBox operator "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YoloBox operators.")
        .SetDefault(32);
    AddAttr<float>("conf_thresh",
D
dengkaipeng 已提交
163 164
                   "The confidence scores threshold of detection boxes. "
                   "Boxes with confidence scores under threshold should "
D
dengkaipeng 已提交
165 166
                   "be ignored.")
        .SetDefault(0.01);
167 168 169 170
    AddAttr<bool>("clip_bbox",
                  "Whether clip output bonding box in Input(ImgSize) "
                  "boundary. Default true.")
        .SetDefault(true);
171 172 173 174
    AddAttr<float>("scale_x_y",
                   "Scale the center point of decoded bounding "
                   "box. Default 1.0")
        .SetDefault(1.);
175 176 177 178
    AddAttr<bool>("iou_aware", "Whether use iou aware. Default false.")
        .SetDefault(false);
    AddAttr<float>("iou_aware_factor", "iou aware factor. Default 0.5.")
        .SetDefault(0.5);
D
dengkaipeng 已提交
179
    AddComment(R"DOC(
D
dengkaipeng 已提交
180
         This operator generates YOLO detection boxes from output of YOLOv3 network.
D
dengkaipeng 已提交
181 182
         
         The output of previous network is in shape [N, C, H, W], while H and W
D
dengkaipeng 已提交
183 184
         should be the same, H and W specify the grid size, each grid point predict 
         given number boxes, this given number, which following will be represented as S,
D
dengkaipeng 已提交
185
         is specified by the number of anchors. In the second dimension(the channel
186 187
         dimension), C should be equal to S * (5 + class_num) if :attr:`iou_aware` is false,
         otherwise C should be equal to S * (6 + class_num). class_num is the object
D
dengkaipeng 已提交
188
         category number of source dataset(such as 80 in coco dataset), so the 
D
dengkaipeng 已提交
189 190 191 192 193 194
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor 
         box.

         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box 
         predictions should be as follows:
D
dengkaipeng 已提交
195 196

         $$
D
dengkaipeng 已提交
197
         b_x = \\sigma(t_x) + c_x
D
dengkaipeng 已提交
198 199
         $$
         $$
D
dengkaipeng 已提交
200
         b_y = \\sigma(t_y) + c_y
D
dengkaipeng 已提交
201 202
         $$
         $$
D
dengkaipeng 已提交
203
         b_w = p_w e^{t_w}
D
dengkaipeng 已提交
204 205
         $$
         $$
D
dengkaipeng 已提交
206 207 208
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
209 210
         in the equation above, :math:`c_x, c_y` is the left top corner of current grid
         and :math:`p_w, p_h` is specified by anchors.
D
dengkaipeng 已提交
211

D
dengkaipeng 已提交
212 213
         The logistic regression value of the 5th channel of each anchor prediction boxes
         represents the confidence score of each prediction box, and the logistic
D
dengkaipeng 已提交
214
         regression value of the last :attr:`class_num` channels of each anchor prediction 
D
dengkaipeng 已提交
215
         boxes represents the classifcation scores. Boxes with confidence scores less than
D
dengkaipeng 已提交
216
         :attr:`conf_thresh` should be ignored, and box final scores is the product of 
D
dengkaipeng 已提交
217
         confidence scores and classification scores.
D
dengkaipeng 已提交
218

D
dengkaipeng 已提交
219 220 221 222
         $$
         score_{pred} = score_{conf} * score_{class}
         $$

223 224 225 226 227 228 229 230 231
         where the confidence scores follow the formula bellow

         .. math::

            score_{conf} = \begin{case}
                             obj, \text{if } iou_aware == flase \\
                             obj^{1 - iou_aware_factor} * iou^{iou_aware_factor}, \text{otherwise}
                           \end{case}

D
dengkaipeng 已提交
232 233 234 235 236 237 238 239
         )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
240 241
DECLARE_INFER_SHAPE_FUNCTOR(yolo_box, YoloBoxInferShapeFunctor,
                            PD_INFER_META(phi::YoloBoxInferMeta));
H
hong 已提交
242 243 244
REGISTER_OPERATOR(
    yolo_box, ops::YoloBoxOp, ops::YoloBoxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
245 246
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    YoloBoxInferShapeFunctor);
247 248 249 250 251 252 253 254 255

REGISTER_OP_VERSION(yolo_box)
    .AddCheckpoint(
        R"ROC(
      Upgrade yolo box to add new attribute [iou_aware, iou_aware_factor].
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("iou_aware", "Whether use iou aware", false)
            .NewAttr("iou_aware_factor", "iou aware factor", 0.5f));