ut_helper.h 8.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

N
nhzlx 已提交
22
#include <memory>
23
#include <string>
N
nhzlx 已提交
24
#include <unordered_set>
25 26
#include <vector>

Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
N
nhzlx 已提交
29
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
30 31 32
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
33
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
43
  static std::mt19937 mt(100);
44
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
45 46 47 48 49 50 51
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
S
Shang Zhizhou 已提交
52 53 54 55
  PADDLE_ENFORCE_GT(
      num_elements, 0UL,
      platform::errors::PermissionDenied("RandomizeTensor only can be used for "
                                         "tensor which dims is not zero."));
N
nhzlx 已提交
56 57 58 59 60

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
61

Y
Yan Chunwei 已提交
62
  for (size_t i = 0; i < num_elements; i++) {
N
nhzlx 已提交
63
    *(temp_data + i) = random(0., 1.);
Y
Yan Chunwei 已提交
64
  }
N
nhzlx 已提交
65 66

  TensorCopySync(temp_tensor, place, tensor);
Y
Yan Chunwei 已提交
67 68 69 70 71 72 73 74 75 76
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

77
  TRTConvertValidation(int max_batch_size,
78
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
79
                       framework::Scope& scope,  // NOLINT
N
nhzlx 已提交
80
                       int workspace_size = 1 << 10, bool if_add_batch = true)
81 82
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
83 84
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
S
Shang Zhizhou 已提交
85 86
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0,
                      platform::errors::External("cudaStreamCreate error."));
Z
Zhaolong Xing 已提交
87
    engine_.reset(new TensorRTEngine(max_batch_size, workspace_size));
N
nhzlx 已提交
88
    engine_->InitNetwork();
Y
Yan Chunwei 已提交
89 90 91
  }

  // Declare a Variable as input with random initialization.
N
nhzlx 已提交
92 93 94 95 96 97
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
98 99 100 101 102 103
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

N
nhzlx 已提交
104 105 106 107
  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

T
tianshuo78520a 已提交
108
  // Declare a parameter variable in the scope.
109
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
110
    DeclVar(name, dims, true);
111 112
  }

N
nhzlx 已提交
113 114 115 116
  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

Y
Yan Chunwei 已提交
117 118 119 120
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
121
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
122
    platform::CUDADeviceContext ctx(place_);
Y
Yan Chunwei 已提交
123

N
nhzlx 已提交
124 125 126
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
N
nhzlx 已提交
127
    RandomizeTensor(x_tensor, place_, ctx);
N
nhzlx 已提交
128 129 130 131
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
132
    // Init Fluid tensor.
133
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
134
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
135 136 137 138
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
139 140

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
141 142 143 144 145
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

146 147
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
148 149 150 151

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
152
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
153 154
  }

N
nhzlx 已提交
155 156 157
  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
N
nhzlx 已提交
158 159
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
Y
Yan Chunwei 已提交
160
    // Execute Fluid Op
S
Shang Zhizhou 已提交
161 162 163 164 165 166
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_,
                      platform::errors::InvalidArgument(
                          "Runtime batch_size should be less than or equal to "
                          "max_batch_size_. "
                          "But received batch_size:%d, max_batch_size_:%d",
                          batch_size, max_batch_size_));
N
nhzlx 已提交
167 168
    platform::CUDADeviceContext ctx(place_);
    op_->Run(scope_, place_);
169
    cudaStreamSynchronize(stream_);
N
nhzlx 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    std::vector<std::string> input_output_names;

    // Note: we need filter the parameter
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      input_output_names.push_back(input);
    }

    // Collect the fluid outputs.
    std::vector<std::vector<float>> fluid_outs;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      input_output_names.push_back(output);
      std::vector<float> fluid_out;
      auto* var = scope_.FindVar(output);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      fluid_outs.push_back(fluid_out);
    }

    // Bind input and output for TRT.
    const int num_bindings = input_output_names.size();
    std::vector<void*> buffers(num_bindings);

    for (const std::string& name : input_output_names) {
      auto* var = scope_.FindVar(name);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      const int bind_index = engine_->engine()->getBindingIndex(name.c_str());
      buffers[bind_index] =
N
nhzlx 已提交
199
          static_cast<void*>(tensor->mutable_data<float>(place_));
N
nhzlx 已提交
200 201
    }

202
    // Execute TRT.
203
    engine_->Execute(batch_size, &buffers, stream_);
204
    cudaStreamSynchronize(stream_);
Y
Yan Chunwei 已提交
205 206

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
207
    int index = 0;
Y
Yan Chunwei 已提交
208
    for (const auto& output : op_desc_->OutputArgumentNames()) {
N
nhzlx 已提交
209
      if (neglected_output.count(output)) continue;
N
nhzlx 已提交
210
      std::vector<float> trt_out;
Y
Yan Chunwei 已提交
211
      auto* var = scope_.FindVar(output);
N
nhzlx 已提交
212 213
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &trt_out);
N
nhzlx 已提交
214

N
nhzlx 已提交
215
      size_t fluid_out_size = fluid_outs[index].size();
N
nhzlx 已提交
216
      if (if_add_batch_ == true) {
N
nhzlx 已提交
217 218
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
219
      }
N
nhzlx 已提交
220

N
nhzlx 已提交
221
      for (size_t i = 0; i < fluid_out_size; i++) {
222
        // Loose the threshold for CI in different machine model.
N
nhzlx 已提交
223
        EXPECT_LT(std::abs(fluid_outs[index][i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
224
      }
N
nhzlx 已提交
225
      index += 1;
Y
Yan Chunwei 已提交
226 227 228 229 230 231
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
N
nhzlx 已提交
232
  platform::CUDAPlace place_;
Y
Yan Chunwei 已提交
233 234 235 236
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
237 238
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
239 240 241 242 243 244
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
245 246 247 248 249
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle