ut_helper.h 7.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

22 23 24
#include <string>
#include <vector>

Y
Yan Chunwei 已提交
25 26
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
28 29 30
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
31
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
43
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
44 45 46 47 48 49 50 51
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
N
nhzlx 已提交
52 53 54 55 56

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
57

Y
Yan Chunwei 已提交
58
  for (size_t i = 0; i < num_elements; i++) {
N
nhzlx 已提交
59
    *(temp_data + i) = random(0., 1.);
Y
Yan Chunwei 已提交
60
  }
N
nhzlx 已提交
61 62

  TensorCopySync(temp_tensor, place, tensor);
Y
Yan Chunwei 已提交
63 64 65 66 67 68 69 70 71 72
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

73
  TRTConvertValidation(int max_batch_size,
74
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
75
                       framework::Scope& scope,  // NOLINT
N
nhzlx 已提交
76
                       int workspace_size = 1 << 10, bool if_add_batch = true)
77 78
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
79 80
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
Y
Yan Chunwei 已提交
81
    // create engine.
82
    engine_.reset(new TensorRTEngine(max_batch_size, workspace_size, &stream_));
Y
Yan Chunwei 已提交
83 84 85 86 87 88
    engine_->InitNetwork();

    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
  }

  // Declare a Variable as input with random initialization.
N
nhzlx 已提交
89 90 91 92 93 94
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
95 96 97 98 99 100
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

101 102
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
103
    DeclVar(name, dims, true);
104 105
  }

Y
Yan Chunwei 已提交
106 107 108 109
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
110
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
111 112
    platform::CUDAPlace place;
    platform::CUDADeviceContext ctx(place);
Y
Yan Chunwei 已提交
113

N
nhzlx 已提交
114 115 116 117 118 119 120 121
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, place, ctx);
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
122
    // Init Fluid tensor.
123
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
124
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
125 126 127 128
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
129 130

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
131 132 133 134 135
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

136 137
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
138 139 140 141

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
142
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
143 144 145

    // Set Inputs.
    for (const auto& input : op_desc_->InputArgumentNames()) {
146
      if (parameters_.count(input)) continue;
Y
Yan Chunwei 已提交
147 148 149
      auto* var = scope_.FindVar(input);
      PADDLE_ENFORCE(var);
      auto tensor = var->GetMutable<framework::LoDTensor>();
150

N
nhzlx 已提交
151
      engine_->SetInputFromGPU(
152
          input, static_cast<void*>(tensor->data<void>()),
Y
Yan Chunwei 已提交
153 154 155 156 157 158 159
          sizeof(float) *
              analysis::AccuDims(tensor->dims(), tensor->dims().size()));
    }
  }

  void Execute(int batch_size) {
    // Execute Fluid Op
N
nhzlx 已提交
160
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
N
nhzlx 已提交
161 162
    platform::CUDAPlace place;
    platform::CUDADeviceContext ctx(place);
Y
Yan Chunwei 已提交
163
    op_->Run(scope_, place);
164 165 166
    // Execute TRT.
    engine_->Execute(batch_size);
    cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
167 168

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
169
    const size_t output_space_size = 3000;
Y
Yan Chunwei 已提交
170 171
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      std::vector<float> fluid_out;
172
      std::vector<float> trt_out(output_space_size);
N
nhzlx 已提交
173
      engine_->GetOutputInCPU(output, &trt_out[0], output_space_size);
174
      cudaStreamSynchronize(*engine_->stream());
Y
Yan Chunwei 已提交
175 176 177 178

      auto* var = scope_.FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
N
nhzlx 已提交
179 180 181

      size_t fluid_out_size = fluid_out.size();
      if (if_add_batch_ == true) {
N
nhzlx 已提交
182 183
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
184
      }
Y
Yan Chunwei 已提交
185 186
      // Compare two output
      ASSERT_FALSE(fluid_out.empty());
N
nhzlx 已提交
187
      for (size_t i = 0; i < fluid_out_size; i++) {
188 189
        // Loose the threshold for CI in different machine model.
        EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
190 191 192 193 194 195 196 197 198 199 200
      }
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
201 202
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
203 204 205 206 207 208
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
209 210 211 212 213
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle