softmax_op.cc 3.6 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/operators/softmax_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"),
                   "Output(Y) of SoftmaxOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(x_dims.size() == 2UL,
C
caoying03 已提交
33
                   "The input of softmax op must be a matrix.");
Q
Qiao Longfei 已提交
34
    ctx->SetOutputDim("Y", x_dims);
35 36 37
  }
};

D
dongzhihong 已提交
38
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
39
 public:
Q
Qiao Longfei 已提交
40 41
  SoftmaxOpMaker(framework::OpProto* proto,
                 framework::OpAttrChecker* op_checker)
42
      : OpProtoAndCheckerMaker(proto, op_checker) {
43
    AddInput("X",
C
caoying03 已提交
44 45
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
46
    AddOutput("Y", "The normalized values with the same shape as X.");
C
caoying03 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
    AddComment(R"DOC(
The input of softmax operator is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1. Specifically, it computes the
exponential of the given dimension and the sum of exponential values of all
the other dimensions in the K-dimensional vector input. Then the ratio of the
exponential of the given dimension and the sum of exponential values of all
the other dimensions is the output of the softmax operator.

60 61
For each row `i` and each column `j` in input X, we have:
    Y[i, j] = exp(X[i, j]) / sum_j(exp(X[i, j]))
C
caoying03 已提交
62 63

)DOC");
64 65 66
  }
};

D
dongzhihong 已提交
67
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
68 69 70
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

71
 protected:
72
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
73 74 75 76 77
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Y"),
                      ctx->GetInputDim(framework::GradVarName("Y")),
78 79
                      "Input(Y) and its gradients should have a same shape.");

Q
Qiao Longfei 已提交
80
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
D
dongzhihong 已提交
81 82 83
  }
};

84 85 86
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
87
namespace ops = paddle::operators;
D
dongzhihong 已提交
88

89 90
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
            ops::SoftmaxOpGrad);
D
dongzhihong 已提交
91 92 93 94
REGISTER_OP_CPU_KERNEL(softmax,
                       ops::SoftmaxKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad, ops::SoftmaxGradKernel<paddle::platform::CPUPlace, float>);