Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
5b4526fa
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5b4526fa
编写于
9月 07, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rename input and output of softmax_op.
上级
e61485e0
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
60 addition
and
58 deletion
+60
-58
paddle/operators/identity_op.cc
paddle/operators/identity_op.cc
+2
-2
paddle/operators/scale_op.cc
paddle/operators/scale_op.cc
+2
-1
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+15
-16
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+10
-10
python/paddle/v2/framework/op.py
python/paddle/v2/framework/op.py
+25
-23
python/paddle/v2/framework/tests/test_gradient_checker.py
python/paddle/v2/framework/tests/test_gradient_checker.py
+2
-2
python/paddle/v2/framework/tests/test_softmax_op.py
python/paddle/v2/framework/tests/test_softmax_op.py
+4
-4
未找到文件。
paddle/operators/identity_op.cc
浏览文件 @
5b4526fa
...
...
@@ -19,7 +19,7 @@ namespace paddle {
namespace
operators
{
// The identity operator is an alias of the scale operator. This is also an
// example for creating
the
alias for an existing operator.
// example for creating
an
alias for an existing operator.
template
<
typename
AttrType
>
class
IdentityOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
...
...
@@ -30,7 +30,7 @@ class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"The output tensor of identity operator."
);
AddComment
(
R"DOC(
The identity operator is an alias of the scale operator
with the attribute scale fixed to 1.0
with the attribute scale fixed to 1.0
.
)DOC"
);
}
};
...
...
paddle/operators/scale_op.cc
浏览文件 @
5b4526fa
...
...
@@ -49,7 +49,8 @@ The equation is: Out = scale*X
}
};
// The gradients of a scale operator is just the scale operator itself.
// The operator to calculate gradients of a scale operator is just the scale
// operator itself.
// Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out))
template
<
typename
AttrType
>
class
ScaleGradOp
:
public
NetOp
{
...
...
paddle/operators/softmax_op.cc
浏览文件 @
5b4526fa
...
...
@@ -23,9 +23,9 @@ class SoftmaxOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"
Logits
"
)
->
dims
().
size
()
==
2UL
,
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"
X
"
)
->
dims
().
size
()
==
2UL
,
"The input of softmax op must be a matrix."
);
ctx
.
Output
<
Tensor
>
(
"
Out"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Logits
"
)
->
dims
());
ctx
.
Output
<
Tensor
>
(
"
Y"
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X
"
)
->
dims
());
}
};
...
...
@@ -34,10 +34,10 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
SoftmaxOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"
Logits
"
,
AddInput
(
"
X
"
,
"The input tensor of softmax. "
"2-D with shape [batch_size, input_feature_dimensions]."
);
AddOutput
(
"
Out"
,
"The normalized values with the same shape as the input
."
);
AddOutput
(
"
Y"
,
"The normalized values with the same shape as X
."
);
AddComment
(
R"DOC(
The input of softmax operator is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
...
...
@@ -51,8 +51,8 @@ the other dimensions in the K-dimensional vector input. Then the ratio of the
exponential of the given dimension and the sum of exponential values of all
the other dimensions is the output of the softmax operator.
For each row `i` and each column `j` in
the input: Logits
, we have:
Out[i, j] = exp(Logits[i, j]) / sum_j(exp(Logits
[i, j]))
For each row `i` and each column `j` in
input X
, we have:
Y[i, j] = exp(X[i, j]) / sum_j(exp(X
[i, j]))
)DOC"
);
}
...
...
@@ -64,16 +64,15 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Out"
),
"Input(Out) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should be not null."
);
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"Out"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
(),
"Input(Out) and its gradients should have a same shape."
);
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Logits"
)
->
dims
());
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) should be not null."
);
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
dims
(),
"Input(Y) and its gradients should have a same shape."
);
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
};
...
...
paddle/operators/softmax_op.h
浏览文件 @
5b4526fa
...
...
@@ -28,12 +28,12 @@ template <typename Place, typename T>
class
SoftmaxKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
X
=
context
.
Input
<
Tensor
>
(
"
Logits
"
);
auto
Y
=
context
.
Output
<
Tensor
>
(
"
Out
"
);
auto
X
=
context
.
Input
<
Tensor
>
(
"
X
"
);
auto
Y
=
context
.
Output
<
Tensor
>
(
"
Y
"
);
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
X
);
auto
out
=
EigenMatrix
<
T
>::
From
(
*
Y
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
Y
);
const
int
kBatchDim
=
0
;
const
int
kClassDim
=
1
;
...
...
@@ -51,11 +51,11 @@ class SoftmaxKernel : public framework::OpKernel {
.
reshape
(
batch_by_one
)
.
broadcast
(
one_by_class
));
out
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
shifted_logits
.
exp
();
softmax
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
shifted_logits
.
exp
();
out
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
(
out
*
out
.
sum
(
along_class
)
softmax
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
(
softmax
*
softmax
.
sum
(
along_class
)
.
inverse
()
.
eval
()
.
reshape
(
batch_by_one
)
...
...
@@ -69,9 +69,9 @@ class SoftmaxGradKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
std
::
shared_ptr
<
Tensor
>
scale_
=
std
::
make_shared
<
Tensor
>
();
auto
Y
=
context
.
Input
<
Tensor
>
(
"
Out
"
);
auto
dY
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"
Out
"
));
auto
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"
Logits
"
));
auto
Y
=
context
.
Input
<
Tensor
>
(
"
Y
"
);
auto
dY
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"
Y
"
));
auto
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"
X
"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
batch_size
=
Y
->
dims
()[
0
];
...
...
python/paddle/v2/framework/op.py
浏览文件 @
5b4526fa
...
...
@@ -5,7 +5,7 @@ import paddle.v2.framework.proto.framework_pb2 as framework_pb2
def
get_all_op_protos
():
"""
Get all registered op proto from PaddlePaddle C++ end.
:return:
list of OpProto
:return:
A list of registered OpProto.
"""
protostrs
=
core
.
get_all_op_protos
()
ret_values
=
[]
...
...
@@ -21,8 +21,8 @@ def is_str(s):
class
OpDescCreationMethod
(
object
):
"""
A Functor object converting the user's input(only keyword arguments are
supported) to OpDesc
based on the OpProto.
Convert the user's input(only keyword arguments are supported) to OpDesc
based on the OpProto.
:param op_proto: The OpProto object.
:type op_proto: op_proto_pb2.OpProto
...
...
@@ -37,7 +37,7 @@ class OpDescCreationMethod(object):
def
__call__
(
self
,
*
args
,
**
kwargs
):
"""
Convert user's input to OpDesc. Only keyword arguments are supported.
:return:
OpDesc based on user input
:return:
The OpDesc based on user input.
:rtype: op_desc_pb2.OpDesc
"""
if
len
(
args
)
!=
0
:
...
...
@@ -54,7 +54,7 @@ class OpDescCreationMethod(object):
"Input %s expects only one input, but %d are given."
%
(
input_parameter
.
name
,
len
(
input_arguments
)))
ipt
=
op_desc
.
inputs
.
add
()
ipt
=
op_desc
.
inputs
.
add
()
ipt
.
parameter
=
input_parameter
.
name
ipt
.
arguments
.
extend
(
input_arguments
)
...
...
@@ -68,7 +68,7 @@ class OpDescCreationMethod(object):
"Output %s expects only one output, but %d are given."
%
(
output_parameter
.
name
,
len
(
output_arguments
)))
out
=
op_desc
.
outputs
.
add
()
out
=
op_desc
.
outputs
.
add
()
out
.
parameter
=
output_parameter
.
name
out
.
arguments
.
extend
(
output_arguments
)
...
...
@@ -106,12 +106,13 @@ class OpDescCreationMethod(object):
"A not supported attribute type: %s."
%
(
str
(
attr
.
type
)))
return
op_desc
return
op_desc
@
staticmethod
def
any_is_true
(
generator
):
"""
Reduce a bool array to one. If any of them is True, then return True.
Reduce a boolean array to a single boolean parameter. If any element in
the array is True, this function will return True, otherwise False.
"""
for
flag
in
generator
:
if
flag
:
...
...
@@ -130,7 +131,7 @@ class OpInfo(object):
def
create_op_creation_method
(
op_proto
):
"""
Generate op creation method for an OpProto
Generate op creation method for an OpProto
.
"""
method
=
OpDescCreationMethod
(
op_proto
)
...
...
@@ -145,27 +146,28 @@ def create_op_creation_method(op_proto):
outputs
=
[
var
.
name
for
var
in
op_proto
.
outputs
],
attrs
=
[
attr
.
name
for
attr
in
op_proto
.
attrs
])
class
OperatorFactory
(
object
):
def
__init__
(
self
):
self
.
op_methods
=
dict
()
class
OperatorFactory
(
object
):
def
__init__
(
self
):
self
.
op_methods
=
dict
()
for
op_proto
in
get_all_op_protos
():
method
=
create_op_creation_method
(
op_proto
)
self
.
op_methods
[
method
.
name
]
=
method
def
__call__
(
self
,
*
args
,
**
kwargs
):
if
'type'
in
kwargs
:
if
"type"
in
kwargs
:
if
len
(
args
)
!=
0
:
raise
ValueError
(
(
"All PaddlePaddle arguments should be keyword
"
"arguments except the argument
\"
type
\"
."
)
)
t
=
kwargs
.
pop
(
'type'
)
"Except the argument
\"
type
\"
,
"
"all of the other arguments should be keyword arguments."
)
t
=
kwargs
.
pop
(
"type"
)
else
:
if
len
(
args
)
!=
1
:
raise
ValueError
(
(
"All PaddlePaddle arguments should be keyword
"
"arguments except the argument
\"
type
\"
."
)
)
t
=
args
[
0
]
"Except the argument
\"
type
\"
,
"
"all of the other arguments should be keyword arguments."
)
t
=
args
[
0
]
return
self
.
get_op_info
(
t
).
method
(
**
kwargs
)
...
...
@@ -189,7 +191,7 @@ def create_op_creation_method(op_proto):
class
__RecurrentOp__
(
object
):
__proto__
=
None
type
=
'recurrent'
type
=
"recurrent"
def
__init__
(
self
):
# cache recurrent_op's proto
...
...
@@ -199,8 +201,8 @@ class __RecurrentOp__(object):
self
.
__proto__
=
op_proto
def
__call__
(
self
,
*
args
,
**
kwargs
):
if
self
.
type
not
in
args
and
'type'
not
in
kwargs
:
kwargs
[
'type'
]
=
self
.
type
if
self
.
type
not
in
args
and
"type"
not
in
kwargs
:
kwargs
[
"type"
]
=
self
.
type
# create proto
create_method
=
OpDescCreationMethod
(
self
.
__proto__
)
proto
=
create_method
(
*
args
,
**
kwargs
)
...
...
@@ -208,5 +210,5 @@ class __RecurrentOp__(object):
return
core
.
RecurrentOp
.
create
(
proto
.
SerializeToString
())
Operator
=
OperatorFactory
()
#
D
efault global factory
Operator
=
OperatorFactory
()
#
The d
efault global factory
RecurrentOp
=
__RecurrentOp__
()
python/paddle/v2/framework/tests/test_gradient_checker.py
浏览文件 @
5b4526fa
...
...
@@ -28,14 +28,14 @@ class GetNumericGradientTest(unittest.TestCase):
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
Logits
=
"Logits"
,
Out
=
"Out
"
)
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y
"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"
Logits"
:
X
},
"Out"
,
"Logits
"
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"
X"
:
X
},
"Y"
,
"X
"
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
...
...
python/paddle/v2/framework/tests/test_softmax_op.py
浏览文件 @
5b4526fa
...
...
@@ -18,9 +18,9 @@ class TestSoftmaxOp(unittest.TestCase):
def
setUp
(
self
):
self
.
type
=
"softmax"
self
.
inputs
=
{
"
Logits
"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
inputs
=
{
"
X
"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
outputs
=
{
"
Out"
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
"Logits
"
])
"
Y"
:
np
.
apply_along_axis
(
stable_softmax
,
1
,
self
.
inputs
[
"X
"
])
}
...
...
@@ -28,11 +28,11 @@ class TestSoftmaxGradOp(GradientChecker):
def
setUp
(
self
):
self
.
op
=
create_op
(
"softmax"
)
self
.
inputs
=
{
"
Logits
"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
"
X
"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
}
def
test_softmax_grad
(
self
):
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"
Logits"
],
"Out
"
)
self
.
check_grad
(
self
.
op
,
self
.
inputs
,
[
"
X"
],
"Y
"
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录