conv_transpose_op.h 11.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
19
#include "paddle/operators/math/im2col.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26 27 28 29 30
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
C
chengduoZH 已提交
31 32
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
33
  Conv2DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker);
C
chengduoZH 已提交
34 35
};

C
chengduoZH 已提交
36 37
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
38
  Conv3DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker);
C
chengduoZH 已提交
39 40
};

C
chengduoZH 已提交
41
class ConvTransposeOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
42 43 44 45 46
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
};

C
chengduoZH 已提交
47
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
C
chengduoZH 已提交
48 49 50 51 52
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
};

Q
QI JUN 已提交
53
template <typename DeviceContext, typename T>
54
class GemmConvTransposeKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
55 56 57 58 59 60 61 62
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped, so it should not be constant pointer
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
C
chengduoZH 已提交
63
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
64 65
    // groups will alway be disabled in conv2dtranspose.

C
chengduoZH 已提交
66
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
67

C
chengduoZH 已提交
68
    // input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
69
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
C
chengduoZH 已提交
70
    // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
71 72 73 74 75
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
C
chengduoZH 已提交
76 77 78 79 80 81 82
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = output->dims()[1];
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
    }
83
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
84 85

    // use col_matrix_shape in the gemm calculation
86
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
87
    DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
88 89 90 91 92 93 94 95 96 97

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix;
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);

98 99 100
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape =
        framework::slice_ddim(output->dims(), 1, output->dims().size());
C
chengduoZH 已提交
101

102 103 104 105 106
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};

    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
107 108 109
    filter.Resize(filter_matrix_shape);

    output->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
110 111 112
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    set_zero(dev_ctx, output, static_cast<T>(0));
C
chengduoZH 已提交
113

Q
QI JUN 已提交
114 115
    math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
    math::Col2VolFunctor<DeviceContext, T> col2vol;
C
chengduoZH 已提交
116 117
    std::vector<int> dilations({1, 1, 1});

118 119
    // convolution transpose: gemm + col2im or col2vol (similar to conv-backward
    // on input)
C
chengduoZH 已提交
120
    for (int i = 0; i < batch_size; i++) {
121
      // batch with size (m, h * w) or (m, d * h * w)
C
chengduoZH 已提交
122 123
      Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);

124
      // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
C
chengduoZH 已提交
125 126 127
      Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

      // col_matrix = filter * input_batch
128
      // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
Q
QI JUN 已提交
129 130 131
      math::matmul<DeviceContext, T>(dev_ctx, filter, true, input_batch, false,
                                     static_cast<T>(1.0), &col_matrix,
                                     static_cast<T>(0.0));
C
chengduoZH 已提交
132

C
chengduoZH 已提交
133
      if (data_dim == 2U) {
134 135
        // col2im: col_matrix -> dy
        // from (c * k_h * k_w, h * w) to (c, o_h, o_w)
Q
QI JUN 已提交
136 137 138
        col2im(dev_ctx, col, std::vector<int>{dilations[0], dilations[1]},
               strides, std::vector<int>{paddings[0], paddings[1], paddings[0],
                                         paddings[1]},
C
chengduoZH 已提交
139
               &output_batch);
C
chengduoZH 已提交
140
      } else if (data_dim == 3U) {
141 142
        // col2vol: col_matrix -> dy
        // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
Q
QI JUN 已提交
143
        col2vol(dev_ctx, col, dilations, strides, paddings, &output_batch);
144
      }
C
chengduoZH 已提交
145 146 147 148
    }
  }
};

Q
QI JUN 已提交
149
template <typename DeviceContext, typename T>
150
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

164 165
    if ((!input_grad) && (!filter_grad)) return;

C
chengduoZH 已提交
166 167 168
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
169
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
170

C
chengduoZH 已提交
171
    // input_shape_vec: {n, c, h, w} or {n, c, d, h, w}
172
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
C
chengduoZH 已提交
173
    // filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
174 175 176 177 178
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
C
chengduoZH 已提交
179 180 181 182 183 184 185
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = output_grad->dims()[1];
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = input_shape_vec[j + 2];
    }
186
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
187

188 189
    // use col_matrix_shape in the gemm calculation
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
190
    DDim col_matrix_shape = framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
191

192 193 194
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
                                              output_grad->dims().size());
C
chengduoZH 已提交
195

196 197
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
C
chengduoZH 已提交
198

199 200
    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
201 202 203 204 205
    filter.Resize(filter_matrix_shape);

    // convolution transpose grad on input:
    // im2col + gemm (similar to conv-forward)
    // input need to compute gradient
Q
QI JUN 已提交
206
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
207 208 209 210 211 212
    if (input_grad || filter_grad) {
      Tensor col;
      col.mutable_data<T>(col_shape, context.GetPlace());
      // col_matrix shares the same piece of data with col,
      // but will be reshaped into a two-dimensional matrix shape
      // to call the matrix multiplication interface.
C
chengduoZH 已提交
213 214 215 216
      Tensor col_matrix;
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);

C
chengduoZH 已提交
217
      Tensor filter_grad_;
Q
QI JUN 已提交
218
      math::SetConstant<DeviceContext, T> set_zero;
C
chengduoZH 已提交
219

Q
QI JUN 已提交
220 221
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
222 223
      std::vector<int> dilations({1, 1, 1});

C
chengduoZH 已提交
224 225 226 227 228
      if (input_grad) {
        input_grad->mutable_data<T>(context.GetPlace());
      }
      if (filter_grad) {  // filter size (m, c, k_h, k_w)
        filter_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
229
        set_zero(dev_ctx, filter_grad, static_cast<T>(0));
C
chengduoZH 已提交
230 231
        filter_grad_ = *filter_grad;
        filter_grad_.Resize(filter_matrix_shape);
C
chengduoZH 已提交
232 233
      }

C
chengduoZH 已提交
234 235
      for (int i = 0; i < batch_size; i++) {
        // batch with size (c, o_h * o_w)
C
chengduoZH 已提交
236 237 238
        Tensor output_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_shape);

C
chengduoZH 已提交
239
        if (data_dim == 2U) {
240 241
          // im2col: dy -> col matrix
          // from (c, o_h, o_w) to (c * k_h * k_w, h * w)
Q
QI JUN 已提交
242
          im2col(dev_ctx, output_grad_batch,
C
chengduoZH 已提交
243 244 245 246
                 std::vector<int>{dilations[0], dilations[1]}, strides,
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
247
        } else if (data_dim == 3U) {
248 249
          // vol2col: dy -> col_matrix
          // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
Q
QI JUN 已提交
250 251
          vol2col(dev_ctx, output_grad_batch, dilations, strides, paddings,
                  &col);
252
        }
C
chengduoZH 已提交
253

C
chengduoZH 已提交
254 255 256 257 258 259
        if (input_grad) {
          // batch with size (m, h, w)
          Tensor input_grad_batch =
              input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: dx = filter * dy
          // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
260
          // or
C
chengduoZH 已提交
261 262
          // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
          // d, h, w)
Q
QI JUN 已提交
263 264 265
          math::matmul<DeviceContext, T>(
              dev_ctx, filter, false, col_matrix, false, static_cast<T>(1.0),
              &input_grad_batch, static_cast<T>(0.0));
C
chengduoZH 已提交
266 267 268 269 270
        }
        if (filter_grad) {
          // input batch
          Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: d_filter = x * dy^T
271 272
          // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
          // or
C
chengduoZH 已提交
273 274
          // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
          // k_h * k_w)
Q
QI JUN 已提交
275 276 277
          math::matmul<DeviceContext, T>(dev_ctx, in_batch, false, col_matrix,
                                         true, static_cast<T>(1.0),
                                         &filter_grad_, static_cast<T>(1.0));
C
chengduoZH 已提交
278
        }
C
chengduoZH 已提交
279 280 281 282 283 284
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle