conv_transpose_op.h 16.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
19
#include "paddle/operators/math/im2col.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26 27 28 29 30
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
C
chengduoZH 已提交
31 32 33 34 35 36
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv2DTransposeOpMaker(framework::OpProto* proto,
                         framework::OpAttrChecker* op_checker);
};

C
chengduoZH 已提交
37 38 39 40 41 42
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv3DTransposeOpMaker(framework::OpProto* proto,
                         framework::OpAttrChecker* op_checker);
};

C
chengduoZH 已提交
43
class ConvTransposeOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
44 45 46 47 48 49 50
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

C
chengduoZH 已提交
51
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
C
chengduoZH 已提交
52 53 54 55 56 57 58 59
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override;
};

template <typename Place, typename T>
C
chengduoZH 已提交
60
class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
61 62 63 64 65 66 67 68
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped, so it should not be constant pointer
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
C
chengduoZH 已提交
69 70 71
    // TODO(Zhuoyuan): Paddings can be added in future.
    // groups will alway be disabled in conv2dtranspose.

C
chengduoZH 已提交
72 73 74 75
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int64_t m = input->dims()[1];
    const int64_t h = input->dims()[2];
    const int64_t w = input->dims()[3];
C
chengduoZH 已提交
76

C
chengduoZH 已提交
77 78
    const int64_t k_h = filter.dims()[2];
    const int64_t k_w = filter.dims()[3];
C
chengduoZH 已提交
79

C
chengduoZH 已提交
80 81 82
    const int64_t c = output->dims()[1];  // output channels
    const int64_t o_h = output->dims()[2];
    const int64_t o_w = output->dims()[3];
C
chengduoZH 已提交
83

C
chengduoZH 已提交
84
    math::Col2ImFunctor<math::ColFormat::kCFO, Place, T> col2im;
C
chengduoZH 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    // use col_shape in the im2col and col2im calculation
    DDim col_shape = {c, k_h, k_w, h, w};

    // use col_matrix_shape in the gemm calculation
    DDim col_matrix_shape = {c * k_h * k_w, h * w};

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix;
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);

    DDim output_shape = {c, o_h, o_w};
    DDim input_matrix_shape = {m, h * w};

C
chengduoZH 已提交
104
    // filter size: (m, c * k_h * k_w)
C
chengduoZH 已提交
105 106 107 108
    DDim filter_matrix_shape = {m, c * k_h * k_w};
    filter.Resize(filter_matrix_shape);

    output->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
109 110
    math::SetConstant<Place, T> set_zero;
    set_zero(context.device_context(), output, static_cast<T>(0));
C
chengduoZH 已提交
111

C
chengduoZH 已提交
112
    // convolution transpose: gemm + col2im (similar to conv-backward on input)
C
chengduoZH 已提交
113
    for (int i = 0; i < batch_size; i++) {
C
chengduoZH 已提交
114
      // batch with size (m, h * w)
C
chengduoZH 已提交
115 116 117 118 119 120 121 122
      Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);

      // output size: (c, o_h, o_w)
      Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

      // col_matrix = filter * input_batch
      // of shape (c * k_h * k_w, h * w)
      math::matmul<Place, T>(context.device_context(), filter, true,
C
chengduoZH 已提交
123 124 125 126 127
                             input_batch, false, static_cast<T>(1.0),
                             &col_matrix, static_cast<T>(0.0));

      // col2im: col_matrix -> dy
      // from (c * k_h * k_w, h * w) to (c, o_h, o_w)
C
chengduoZH 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
      col2im(context.device_context(), output_batch, col, strides[0],
             strides[1], 0, 0, 0, 0);
    }
  }
};

template <typename Place, typename T>
class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));

    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    // Actually, no paddings and groups allowed in conv transpose.
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
154 155 156 157
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int64_t m = input->dims()[1];
    const int64_t h = input->dims()[2];
    const int64_t w = input->dims()[3];
C
chengduoZH 已提交
158

C
chengduoZH 已提交
159 160
    const int64_t k_h = filter.dims()[2];
    const int64_t k_w = filter.dims()[3];
C
chengduoZH 已提交
161

C
chengduoZH 已提交
162 163 164
    const int64_t c = output_grad->dims()[1];  // output channels
    const int64_t o_h = output_grad->dims()[2];
    const int64_t o_w = output_grad->dims()[3];
C
chengduoZH 已提交
165 166

    // Only im2col functor required for bp to get to the right shape
C
chengduoZH 已提交
167
    math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
C
chengduoZH 已提交
168 169 170 171 172 173 174 175 176 177

    // use col_shape in the im2col and col2im calculation
    DDim col_shape = {c, k_h, k_w, h, w};

    DDim output_shape = {c, o_h, o_w};
    DDim input_matrix_shape = {m, h * w};

    DDim filter_matrix_shape = {m, c * k_h * k_w};
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
178 179 180 181
    if ((!input_grad) && (!filter_grad)) {
      return;
    }

C
chengduoZH 已提交
182 183 184
    // convolution transpose grad on input:
    // im2col + gemm (similar to conv-forward)
    // input need to compute gradient
C
chengduoZH 已提交
185 186 187 188 189 190
    if (input_grad || filter_grad) {
      Tensor col;
      col.mutable_data<T>(col_shape, context.GetPlace());
      // col_matrix shares the same piece of data with col,
      // but will be reshaped into a two-dimensional matrix shape
      // to call the matrix multiplication interface.
C
chengduoZH 已提交
191 192 193 194 195
      Tensor col_matrix;
      col_matrix.ShareDataWith(col);
      DDim col_matrix_shape = {c * k_h * k_w, h * w};
      col_matrix.Resize(col_matrix_shape);

C
chengduoZH 已提交
196 197
      Tensor filter_grad_;
      math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
198

C
chengduoZH 已提交
199 200 201 202 203 204 205 206 207
      if (input_grad) {
        input_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), input_grad, static_cast<T>(0));
      }
      if (filter_grad) {  // filter size (m, c, k_h, k_w)
        filter_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), filter_grad, static_cast<T>(0));
        filter_grad_ = *filter_grad;
        filter_grad_.Resize(filter_matrix_shape);
C
chengduoZH 已提交
208 209
      }

C
chengduoZH 已提交
210 211
      for (int i = 0; i < batch_size; i++) {
        // batch with size (c, o_h * o_w)
C
chengduoZH 已提交
212 213 214
        Tensor output_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_shape);

C
chengduoZH 已提交
215 216
        // im2col: dy -> col matrix
        // from (c, o_h, o_w) to (c * k_h * k_w, h * w)
C
chengduoZH 已提交
217 218 219
        im2col(context.device_context(), output_grad_batch, col, strides[0],
               strides[1], paddings[0], paddings[0], paddings[1], paddings[1]);

C
chengduoZH 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        if (input_grad) {
          // batch with size (m, h, w)
          Tensor input_grad_batch =
              input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: dx = filter * dy
          // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
          math::matmul<Place, T>(context.device_context(), filter, false,
                                 col_matrix, false, static_cast<T>(1.0),
                                 &input_grad_batch, static_cast<T>(0.0));
        }
        if (filter_grad) {
          // input batch
          Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: d_filter = x * dy^T
          // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
          math::matmul<Place, T>(context.device_context(), in_batch, false,
                                 col_matrix, true, static_cast<T>(1.0),
                                 &filter_grad_, static_cast<T>(1.0));
        }
C
chengduoZH 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
      }
    }
  }
};

template <typename Place, typename T>
class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped, so it should not be constant pointer
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
C
chengduoZH 已提交
254 255 256
    // TODO(chengduo): Paddings can be added in future.
    // groups will alway be disabled in conv3dtranspose.

C
chengduoZH 已提交
257 258 259 260 261
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int64_t m = input->dims()[1];
    const int64_t d = input->dims()[2];
    const int64_t h = input->dims()[3];
    const int64_t w = input->dims()[4];
C
chengduoZH 已提交
262

C
chengduoZH 已提交
263 264 265
    const int64_t k_d = filter.dims()[2];
    const int64_t k_h = filter.dims()[3];
    const int64_t k_w = filter.dims()[4];
C
chengduoZH 已提交
266

C
chengduoZH 已提交
267 268 269 270
    const int64_t c = output->dims()[1];  // output channels
    const int64_t o_d = output->dims()[2];
    const int64_t o_h = output->dims()[3];
    const int64_t o_w = output->dims()[4];
C
chengduoZH 已提交
271

C
chengduoZH 已提交
272
    math::Col2VolFunctor<Place, T> col2vol;
C
chengduoZH 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    // use col_shape in the vol2col and col2vol calculation
    DDim col_shape = {c, k_d, k_h, k_w, d, h, w};
    // use col_matrix_shape in the gemm calculation
    DDim col_matrix_shape = {c * k_d * k_h * k_w, d * h * w};

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix;
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);

    DDim output_shape = {c, o_d, o_h, o_w};
    DDim input_matrix_shape = {m, d * h * w};

C
chengduoZH 已提交
291
    // filter size: (m, c * k_d * k_h * k_w)
C
chengduoZH 已提交
292 293 294 295
    DDim filter_matrix_shape = {m, c * k_d * k_h * k_w};
    filter.Resize(filter_matrix_shape);

    output->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
296 297
    math::SetConstant<Place, T> set_zero;
    set_zero(context.device_context(), output, static_cast<T>(0));
C
chengduoZH 已提交
298

C
chengduoZH 已提交
299
    // convolution transpose: gemm + col2vol (similar to conv-backward on input)
C
chengduoZH 已提交
300
    for (int i = 0; i < batch_size; i++) {
C
chengduoZH 已提交
301
      // batch with size (m, d * h * w)
C
chengduoZH 已提交
302 303 304 305 306 307 308 309
      Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);

      // output size: (c, o_d, o_h, o_w)
      Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

      // col_matrix = filter * input_batch
      // of shape (c * k_d * k_h * k_w, d * h * w)
      math::matmul<Place, T>(context.device_context(), filter, true,
C
chengduoZH 已提交
310 311 312 313
                             input_batch, false, static_cast<T>(1.0),
                             &col_matrix, static_cast<T>(0.0));
      // col2vol: col_matrix -> dy
      // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
C
chengduoZH 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
      col2vol(context.device_context(), output_batch, col, strides[0],
              strides[1], strides[2], 0, 0, 0);
    }
  }
};

template <typename Place, typename T>
class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));

    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    // Actually, no paddings and groups allowed in conv transpose.
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
340 341 342 343 344
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int64_t m = input->dims()[1];
    const int64_t d = input->dims()[2];
    const int64_t h = input->dims()[3];
    const int64_t w = input->dims()[4];
C
chengduoZH 已提交
345

C
chengduoZH 已提交
346 347 348
    const int64_t k_d = filter.dims()[2];
    const int64_t k_h = filter.dims()[3];
    const int64_t k_w = filter.dims()[4];
C
chengduoZH 已提交
349

C
chengduoZH 已提交
350 351 352 353
    const int64_t c = output_grad->dims()[1];  // output channels
    const int64_t o_d = output_grad->dims()[2];
    const int64_t o_h = output_grad->dims()[3];
    const int64_t o_w = output_grad->dims()[4];
C
chengduoZH 已提交
354 355

    // Only vol2col functor required for bp to get to the right shape
C
chengduoZH 已提交
356
    math::Vol2ColFunctor<Place, T> vol2col;
C
chengduoZH 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369

    // use col_shape in the vol2col and col2vol calculation
    DDim col_shape = {c, k_d, k_h, k_w, d, h, w};

    // use col_matrix_shape in the gemm calculation
    DDim col_matrix_shape_f = {c * d * h * w, k_d * k_h * k_w};

    DDim output_shape = {c, o_d, o_h, o_w};
    DDim input_matrix_shape = {m, d * h * w};

    DDim filter_matrix_shape = {m, c * k_d * k_h * k_w};
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
370 371 372 373
    if ((!input_grad) && (!filter_grad)) {
      return;
    }

C
chengduoZH 已提交
374 375 376
    // convolution transpose grad on input:
    // vol2col + gemm (similar to conv-forward)
    // input need to compute gradient
C
chengduoZH 已提交
377 378 379 380 381 382
    if (input_grad || filter_grad) {
      Tensor col;
      col.mutable_data<T>(col_shape, context.GetPlace());
      // col_matrix shares the same piece of data with col,
      // but will be reshaped into a two-dimensional matrix shape
      // to call the matrix multiplication interface.
C
chengduoZH 已提交
383 384 385 386 387
      Tensor col_matrix;
      col_matrix.ShareDataWith(col);
      DDim col_matrix_shape = {c * k_d * k_h * k_w, d * h * w};
      col_matrix.Resize(col_matrix_shape);

C
chengduoZH 已提交
388 389
      Tensor filter_grad_;
      math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
390

C
chengduoZH 已提交
391 392 393 394 395 396 397 398 399
      if (input_grad) {
        input_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), input_grad, static_cast<T>(0));
      }
      if (filter_grad) {  // filter size (m, c * k_d * k_h * k_w)
        filter_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), filter_grad, static_cast<T>(0));
        filter_grad_ = *filter_grad;
        filter_grad_.Resize(filter_matrix_shape);
C
chengduoZH 已提交
400 401
      }

C
chengduoZH 已提交
402 403
      for (int i = 0; i < batch_size; i++) {
        // batch with size (c, o_d * o_h * o_w)
C
chengduoZH 已提交
404 405 406
        Tensor output_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_shape);

C
chengduoZH 已提交
407 408
        // vol2col: dy -> col_matrix
        // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
409 410 411
        vol2col(context.device_context(), output_grad_batch, col, strides[0],
                strides[1], strides[2], paddings[0], paddings[1], paddings[2]);

C
chengduoZH 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        if (input_grad) {
          // batch with size (m, d, h, w)
          Tensor input_grad_batch =
              input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: dx = filter * dy
          // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
          // d, h, w)
          math::matmul<Place, T>(context.device_context(), filter, false,
                                 col_matrix, false, static_cast<T>(1.0),
                                 &input_grad_batch, static_cast<T>(0.0));
        }
        if (filter_grad) {
          // input batch
          Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: d_filter = x * dy^T
          // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
          // k_h * k_w)
          math::matmul<Place, T>(context.device_context(), in_batch, false,
                                 col_matrix, true, static_cast<T>(1.0),
                                 &filter_grad_, static_cast<T>(1.0));
        }
C
chengduoZH 已提交
433 434 435 436 437 438 439
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle