gather_op.cu 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

15
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/gather_op.h"
18 19
#include "paddle/phi/kernels/funcs/gather.cu.h"
#include "paddle/phi/kernels/funcs/scatter.cu.h"
Z
zchen0211 已提交
20 21 22 23 24

namespace paddle {
namespace operators {

template <typename T>
Z
zchen0211 已提交
25
class GatherOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
26 27
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
28 29 30
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
Z
zchen0211 已提交
31 32 33 34
    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

35 36 37
    int axis = ctx.Attr<int>("axis");

    // get axis from tensor
38
    if (ctx.HasInput("Axis")) {
39 40 41
      Tensor cpu_axis;
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
42 43
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
44 45 46 47
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
48 49
      } else if (axis_type == framework::proto::VarType::INT16) {
        axis = static_cast<int>(cpu_axis.data<int16_t>()[0]);
50
      }
51 52
    }
    const auto &place = ctx.GetPlace();
53
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
54
    const auto &dev_ctx = ctx.cuda_device_context();
55 56
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
57 58
        phi::funcs::GatherV2CUDAFunction<T, int32_t>(x, index, axis, output,
                                                     dev_ctx);
59
      } else if (index_type == framework::proto::VarType::INT64) {
60 61
        phi::funcs::GatherV2CUDAFunction<T, int64_t>(x, index, axis, output,
                                                     dev_ctx);
62 63 64
      } else if (index_type == framework::proto::VarType::INT16) {
        phi::funcs::GatherV2CUDAFunction<T, int16_t>(x, index, axis, output,
                                                     dev_ctx);
65 66 67
      }
      return;
    }
68

Z
zchen0211 已提交
69
    output->mutable_data<T>(ctx.GetPlace());
70
    if (x->numel() == 0) return;
71
    if (index_type == framework::proto::VarType::INT32) {
72
      phi::funcs::GPUGather<T, int>(dev_ctx, *x, *index, output);
73
    } else if (index_type == framework::proto::VarType::INT64) {
74
      phi::funcs::GPUGather<T, int64_t>(dev_ctx, *x, *index, output);
75 76
    } else if (index_type == framework::proto::VarType::INT16) {
      phi::funcs::GPUGather<T, int16_t>(dev_ctx, *x, *index, output);
77
    }
Z
zchen0211 已提交
78 79 80 81
  }
};

template <typename T>
Z
zchen0211 已提交
82
class GatherGradOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
83 84
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
85 86 87
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
88
    auto *index = ctx.Input<Tensor>("Index");
Z
zchen0211 已提交
89 90 91
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));

92
    int axis = ctx.Attr<int>("axis");
93
    if (ctx.HasInput("Axis")) {
94 95 96
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      Tensor cpu_axis;
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
97 98
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
99 100 101 102
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
103
      }
104 105
    }

106
    const auto &dev_ctx = ctx.cuda_device_context();
107
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
108 109
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
110 111
        phi::funcs::GatherV2GradCUDAFunction<T, int32_t>(dO, index, axis, dX,
                                                         dev_ctx);
112
      } else if (index_type == framework::proto::VarType::INT64) {
113 114
        phi::funcs::GatherV2GradCUDAFunction<T, int64_t>(dO, index, axis, dX,
                                                         dev_ctx);
115 116 117 118
      }
      return;
    }

Z
zchen0211 已提交
119 120
    dX->mutable_data<T>(ctx.GetPlace());
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
121 122
    auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
123
    dxt.device(place) = dxt.constant(static_cast<T>(0));
124
    if (dO->numel() == 0) return;
125
    if (index_type == framework::proto::VarType::INT32) {
126 127
      phi::funcs::GPUScatterAssign<T, int>(dev_ctx, *dO, *index, dX,
                                           ctx.Attr<bool>("overwrite"));
128
    } else if (index_type == framework::proto::VarType::INT64) {
129 130
      phi::funcs::GPUScatterAssign<T, int64_t>(dev_ctx, *dO, *index, dX,
                                               ctx.Attr<bool>("overwrite"));
131
    }
Z
zchen0211 已提交
132 133 134 135 136 137 138
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
139
namespace plat = paddle::platform;
140 141 142
REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel<float>,
                        ops::GatherOpCUDAKernel<double>,
                        ops::GatherOpCUDAKernel<int64_t>,
143
                        ops::GatherOpCUDAKernel<int>,
144
                        ops::GatherOpCUDAKernel<int16_t>,
145 146
                        ops::GatherOpCUDAKernel<plat::float16>,
                        ops::GatherOpCUDAKernel<plat::bfloat16>);
147 148 149
REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel<float>,
                        ops::GatherGradOpCUDAKernel<double>,
                        ops::GatherGradOpCUDAKernel<int64_t>,
150
                        ops::GatherGradOpCUDAKernel<int>,
151 152
                        ops::GatherGradOpCUDAKernel<plat::float16>,
                        ops::GatherGradOpCUDAKernel<plat::bfloat16>);