gather_op.cu 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

15
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/gather_op.h"
18 19
#include "paddle/phi/kernels/funcs/gather.cu.h"
#include "paddle/phi/kernels/funcs/scatter.cu.h"
Z
zchen0211 已提交
20 21 22 23 24

namespace paddle {
namespace operators {

template <typename T>
Z
zchen0211 已提交
25
class GatherOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
26 27
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
28 29 30
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
Z
zchen0211 已提交
31 32 33 34
    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

35 36 37
    int axis = ctx.Attr<int>("axis");

    // get axis from tensor
38
    if (ctx.HasInput("Axis")) {
39 40 41
      Tensor cpu_axis;
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
42 43
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
44 45 46 47
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
48
      }
49 50
    }
    const auto &place = ctx.GetPlace();
51
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
52
    const auto &dev_ctx = ctx.cuda_device_context();
53 54
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
55 56
        phi::funcs::GatherV2CUDAFunction<T, int32_t>(x, index, axis, output,
                                                     dev_ctx);
57
      } else if (index_type == framework::proto::VarType::INT64) {
58 59
        phi::funcs::GatherV2CUDAFunction<T, int64_t>(x, index, axis, output,
                                                     dev_ctx);
60 61 62
      }
      return;
    }
63

Z
zchen0211 已提交
64
    output->mutable_data<T>(ctx.GetPlace());
65
    if (x->numel() == 0) return;
66
    if (index_type == framework::proto::VarType::INT32) {
67
      phi::funcs::GPUGather<T, int>(dev_ctx, *x, *index, output);
68
    } else if (index_type == framework::proto::VarType::INT64) {
69
      phi::funcs::GPUGather<T, int64_t>(dev_ctx, *x, *index, output);
70
    }
Z
zchen0211 已提交
71 72 73 74
  }
};

template <typename T>
Z
zchen0211 已提交
75
class GatherGradOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
76 77
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
78 79 80
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
81
    auto *index = ctx.Input<Tensor>("Index");
Z
zchen0211 已提交
82 83 84
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));

85
    int axis = ctx.Attr<int>("axis");
86
    if (ctx.HasInput("Axis")) {
87 88 89
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      Tensor cpu_axis;
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
90 91
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
92 93 94 95
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
96
      }
97 98
    }

99
    const auto &dev_ctx = ctx.cuda_device_context();
100
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
101 102
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
103 104
        phi::funcs::GatherV2GradCUDAFunction<T, int32_t>(dO, index, axis, dX,
                                                         dev_ctx);
105
      } else if (index_type == framework::proto::VarType::INT64) {
106 107
        phi::funcs::GatherV2GradCUDAFunction<T, int64_t>(dO, index, axis, dX,
                                                         dev_ctx);
108 109 110 111
      }
      return;
    }

Z
zchen0211 已提交
112 113
    dX->mutable_data<T>(ctx.GetPlace());
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
114 115
    auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
116
    dxt.device(place) = dxt.constant(static_cast<T>(0));
117
    if (dO->numel() == 0) return;
118
    if (index_type == framework::proto::VarType::INT32) {
119 120
      phi::funcs::GPUScatterAssign<T, int>(dev_ctx, *dO, *index, dX,
                                           ctx.Attr<bool>("overwrite"));
121
    } else if (index_type == framework::proto::VarType::INT64) {
122 123
      phi::funcs::GPUScatterAssign<T, int64_t>(dev_ctx, *dO, *index, dX,
                                               ctx.Attr<bool>("overwrite"));
124
    }
Z
zchen0211 已提交
125 126 127 128 129 130 131
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
132
namespace plat = paddle::platform;
133 134 135
REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel<float>,
                        ops::GatherOpCUDAKernel<double>,
                        ops::GatherOpCUDAKernel<int64_t>,
136
                        ops::GatherOpCUDAKernel<int>,
137 138
                        ops::GatherOpCUDAKernel<plat::float16>,
                        ops::GatherOpCUDAKernel<plat::bfloat16>);
139 140 141
REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel<float>,
                        ops::GatherGradOpCUDAKernel<double>,
                        ops::GatherGradOpCUDAKernel<int64_t>,
142
                        ops::GatherGradOpCUDAKernel<int>,
143 144
                        ops::GatherGradOpCUDAKernel<plat::float16>,
                        ops::GatherGradOpCUDAKernel<plat::bfloat16>);