test_yolo_box_op.py 7.1 KB
Newer Older
D
dengkaipeng 已提交
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest
import numpy as np
from op_test import OpTest

21
import paddle
D
dengkaipeng 已提交
22 23 24 25 26 27 28
from paddle.fluid import core


def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


29
def YoloBox(x, img_size, attrs):
D
dengkaipeng 已提交
30 31 32 33 34 35
    n, c, h, w = x.shape
    anchors = attrs['anchors']
    an_num = int(len(anchors) // 2)
    class_num = attrs['class_num']
    conf_thresh = attrs['conf_thresh']
    downsample = attrs['downsample']
36
    clip_bbox = attrs['clip_bbox']
37 38
    scale_x_y = attrs['scale_x_y']
    bias_x_y = -0.5 * (scale_x_y - 1.)
39 40
    input_h = downsample * h
    input_w = downsample * w
D
dengkaipeng 已提交
41 42 43 44 45 46

    x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))

    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
47 48 49 50
    pred_box[:, :, :, :, 0] = (
        grid_x + sigmoid(pred_box[:, :, :, :, 0]) * scale_x_y + bias_x_y) / w
    pred_box[:, :, :, :, 1] = (
        grid_y + sigmoid(pred_box[:, :, :, :, 1]) * scale_x_y + bias_x_y) / h
D
dengkaipeng 已提交
51 52 53

    anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
    anchors_s = np.array(
54
        [(an_w / input_w, an_h / input_h) for an_w, an_h in anchors])
D
dengkaipeng 已提交
55 56 57 58 59 60 61 62 63 64 65
    anchor_w = anchors_s[:, 0:1].reshape((1, an_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, an_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_conf = sigmoid(x[:, :, :, :, 4:5])
    pred_conf[pred_conf < conf_thresh] = 0.
    pred_score = sigmoid(x[:, :, :, :, 5:]) * pred_conf
    pred_box = pred_box * (pred_conf > 0.).astype('float32')

    pred_box = pred_box.reshape((n, -1, 4))
66 67 68 69 70 71 72
    pred_box[:, :, :2], pred_box[:, :, 2:4] = \
        pred_box[:, :, :2] - pred_box[:, :, 2:4] / 2., \
        pred_box[:, :, :2] + pred_box[:, :, 2:4] / 2.0
    pred_box[:, :, 0] = pred_box[:, :, 0] * img_size[:, 1][:, np.newaxis]
    pred_box[:, :, 1] = pred_box[:, :, 1] * img_size[:, 0][:, np.newaxis]
    pred_box[:, :, 2] = pred_box[:, :, 2] * img_size[:, 1][:, np.newaxis]
    pred_box[:, :, 3] = pred_box[:, :, 3] * img_size[:, 0][:, np.newaxis]
D
dengkaipeng 已提交
73

74 75 76 77 78 79 80 81
    if clip_bbox:
        for i in range(len(pred_box)):
            pred_box[i, :, 0] = np.clip(pred_box[i, :, 0], 0, np.inf)
            pred_box[i, :, 1] = np.clip(pred_box[i, :, 1], 0, np.inf)
            pred_box[i, :, 2] = np.clip(pred_box[i, :, 2], -np.inf,
                                        img_size[i, 1] - 1)
            pred_box[i, :, 3] = np.clip(pred_box[i, :, 3], -np.inf,
                                        img_size[i, 0] - 1)
D
dengkaipeng 已提交
82

D
dengkaipeng 已提交
83 84 85 86 87 88 89 90
    return pred_box, pred_score.reshape((n, -1, class_num))


class TestYoloBoxOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolo_box'
        x = np.random.random(self.x_shape).astype('float32')
91
        img_size = np.random.randint(10, 20, self.imgsize_shape).astype('int32')
D
dengkaipeng 已提交
92 93 94 95 96 97

        self.attrs = {
            "anchors": self.anchors,
            "class_num": self.class_num,
            "conf_thresh": self.conf_thresh,
            "downsample": self.downsample,
98
            "clip_bbox": self.clip_bbox,
99
            "scale_x_y": self.scale_x_y,
D
dengkaipeng 已提交
100 101
        }

102 103 104 105 106
        self.inputs = {
            'X': x,
            'ImgSize': img_size,
        }
        boxes, scores = YoloBox(x, img_size, self.attrs)
D
dengkaipeng 已提交
107 108 109 110 111 112
        self.outputs = {
            "Boxes": boxes,
            "Scores": scores,
        }

    def test_check_output(self):
D
dengkaipeng 已提交
113
        self.check_output()
D
dengkaipeng 已提交
114 115 116 117

    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
118
        self.batch_size = 32
D
dengkaipeng 已提交
119 120 121
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
122 123 124
        self.clip_bbox = True
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
        self.imgsize_shape = (self.batch_size, 2)
125
        self.scale_x_y = 1.
126 127 128 129 130 131 132 133 134 135 136


class TestYoloBoxOpNoClipBbox(TestYoloBoxOp):
    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
        self.batch_size = 32
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
        self.clip_bbox = False
137
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
138
        self.imgsize_shape = (self.batch_size, 2)
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        self.scale_x_y = 1.


class TestYoloBoxOpScaleXY(TestYoloBoxOp):
    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
        self.batch_size = 32
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
        self.clip_bbox = True
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
        self.imgsize_shape = (self.batch_size, 2)
        self.scale_x_y = 1.2
D
dengkaipeng 已提交
154 155


156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
class TestYoloBoxDygraph(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        x = np.random.random([2, 14, 8, 8]).astype('float32')
        img_size = np.ones((2, 2)).astype('int32')

        x = paddle.to_tensor(x)
        img_size = paddle.to_tensor(img_size)

        boxes, scores = paddle.vision.ops.yolo_box(
            x,
            img_size=img_size,
            anchors=[10, 13, 16, 30],
            class_num=2,
            conf_thresh=0.01,
            downsample_ratio=8,
            clip_bbox=True,
            scale_x_y=1.)
        assert boxes is not None and scores is not None
        paddle.enable_static()


class TestYoloBoxStatic(unittest.TestCase):
    def test_static(self):
        x = paddle.static.data('x', [2, 14, 8, 8], 'float32')
        img_size = paddle.static.data('img_size', [2, 2], 'int32')

        boxes, scores = paddle.vision.ops.yolo_box(
            x,
            img_size=img_size,
            anchors=[10, 13, 16, 30],
            class_num=2,
            conf_thresh=0.01,
            downsample_ratio=8,
            clip_bbox=True,
            scale_x_y=1.)
        assert boxes is not None and scores is not None


195 196 197 198 199 200 201 202 203 204 205 206 207 208
class TestYoloBoxOpHW(TestYoloBoxOp):
    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
        self.batch_size = 32
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
        self.clip_bbox = False
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 9)
        self.imgsize_shape = (self.batch_size, 2)
        self.scale_x_y = 1.


D
dengkaipeng 已提交
209 210
if __name__ == "__main__":
    unittest.main()