test_yolo_box_op.py 6.6 KB
Newer Older
D
dengkaipeng 已提交
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest
import numpy as np
from op_test import OpTest

21
import paddle
D
dengkaipeng 已提交
22 23 24 25 26 27 28
from paddle.fluid import core


def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


29
def YoloBox(x, img_size, attrs):
D
dengkaipeng 已提交
30 31 32 33 34 35
    n, c, h, w = x.shape
    anchors = attrs['anchors']
    an_num = int(len(anchors) // 2)
    class_num = attrs['class_num']
    conf_thresh = attrs['conf_thresh']
    downsample = attrs['downsample']
36
    clip_bbox = attrs['clip_bbox']
37 38
    scale_x_y = attrs['scale_x_y']
    bias_x_y = -0.5 * (scale_x_y - 1.)
D
dengkaipeng 已提交
39 40 41 42 43 44 45
    input_size = downsample * h

    x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))

    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
46 47 48 49
    pred_box[:, :, :, :, 0] = (
        grid_x + sigmoid(pred_box[:, :, :, :, 0]) * scale_x_y + bias_x_y) / w
    pred_box[:, :, :, :, 1] = (
        grid_y + sigmoid(pred_box[:, :, :, :, 1]) * scale_x_y + bias_x_y) / h
D
dengkaipeng 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, an_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, an_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_conf = sigmoid(x[:, :, :, :, 4:5])
    pred_conf[pred_conf < conf_thresh] = 0.
    pred_score = sigmoid(x[:, :, :, :, 5:]) * pred_conf
    pred_box = pred_box * (pred_conf > 0.).astype('float32')

    pred_box = pred_box.reshape((n, -1, 4))
65 66 67 68 69 70 71
    pred_box[:, :, :2], pred_box[:, :, 2:4] = \
        pred_box[:, :, :2] - pred_box[:, :, 2:4] / 2., \
        pred_box[:, :, :2] + pred_box[:, :, 2:4] / 2.0
    pred_box[:, :, 0] = pred_box[:, :, 0] * img_size[:, 1][:, np.newaxis]
    pred_box[:, :, 1] = pred_box[:, :, 1] * img_size[:, 0][:, np.newaxis]
    pred_box[:, :, 2] = pred_box[:, :, 2] * img_size[:, 1][:, np.newaxis]
    pred_box[:, :, 3] = pred_box[:, :, 3] * img_size[:, 0][:, np.newaxis]
D
dengkaipeng 已提交
72

73 74 75 76 77 78 79 80
    if clip_bbox:
        for i in range(len(pred_box)):
            pred_box[i, :, 0] = np.clip(pred_box[i, :, 0], 0, np.inf)
            pred_box[i, :, 1] = np.clip(pred_box[i, :, 1], 0, np.inf)
            pred_box[i, :, 2] = np.clip(pred_box[i, :, 2], -np.inf,
                                        img_size[i, 1] - 1)
            pred_box[i, :, 3] = np.clip(pred_box[i, :, 3], -np.inf,
                                        img_size[i, 0] - 1)
D
dengkaipeng 已提交
81

D
dengkaipeng 已提交
82 83 84 85 86 87 88 89
    return pred_box, pred_score.reshape((n, -1, class_num))


class TestYoloBoxOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolo_box'
        x = np.random.random(self.x_shape).astype('float32')
90
        img_size = np.random.randint(10, 20, self.imgsize_shape).astype('int32')
D
dengkaipeng 已提交
91 92 93 94 95 96

        self.attrs = {
            "anchors": self.anchors,
            "class_num": self.class_num,
            "conf_thresh": self.conf_thresh,
            "downsample": self.downsample,
97
            "clip_bbox": self.clip_bbox,
98
            "scale_x_y": self.scale_x_y,
D
dengkaipeng 已提交
99 100
        }

101 102 103 104 105
        self.inputs = {
            'X': x,
            'ImgSize': img_size,
        }
        boxes, scores = YoloBox(x, img_size, self.attrs)
D
dengkaipeng 已提交
106 107 108 109 110 111
        self.outputs = {
            "Boxes": boxes,
            "Scores": scores,
        }

    def test_check_output(self):
D
dengkaipeng 已提交
112
        self.check_output()
D
dengkaipeng 已提交
113 114 115 116

    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
117
        self.batch_size = 32
D
dengkaipeng 已提交
118 119 120
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
121 122 123
        self.clip_bbox = True
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
        self.imgsize_shape = (self.batch_size, 2)
124
        self.scale_x_y = 1.
125 126 127 128 129 130 131 132 133 134 135


class TestYoloBoxOpNoClipBbox(TestYoloBoxOp):
    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
        self.batch_size = 32
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
        self.clip_bbox = False
136
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
137
        self.imgsize_shape = (self.batch_size, 2)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.scale_x_y = 1.


class TestYoloBoxOpScaleXY(TestYoloBoxOp):
    def initTestCase(self):
        self.anchors = [10, 13, 16, 30, 33, 23]
        an_num = int(len(self.anchors) // 2)
        self.batch_size = 32
        self.class_num = 2
        self.conf_thresh = 0.5
        self.downsample = 32
        self.clip_bbox = True
        self.x_shape = (self.batch_size, an_num * (5 + self.class_num), 13, 13)
        self.imgsize_shape = (self.batch_size, 2)
        self.scale_x_y = 1.2
D
dengkaipeng 已提交
153 154


155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
class TestYoloBoxDygraph(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        x = np.random.random([2, 14, 8, 8]).astype('float32')
        img_size = np.ones((2, 2)).astype('int32')

        x = paddle.to_tensor(x)
        img_size = paddle.to_tensor(img_size)

        boxes, scores = paddle.vision.ops.yolo_box(
            x,
            img_size=img_size,
            anchors=[10, 13, 16, 30],
            class_num=2,
            conf_thresh=0.01,
            downsample_ratio=8,
            clip_bbox=True,
            scale_x_y=1.)
        assert boxes is not None and scores is not None
        paddle.enable_static()


class TestYoloBoxStatic(unittest.TestCase):
    def test_static(self):
        x = paddle.static.data('x', [2, 14, 8, 8], 'float32')
        img_size = paddle.static.data('img_size', [2, 2], 'int32')

        boxes, scores = paddle.vision.ops.yolo_box(
            x,
            img_size=img_size,
            anchors=[10, 13, 16, 30],
            class_num=2,
            conf_thresh=0.01,
            downsample_ratio=8,
            clip_bbox=True,
            scale_x_y=1.)
        assert boxes is not None and scores is not None


D
dengkaipeng 已提交
194 195
if __name__ == "__main__":
    unittest.main()