math.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note: [ How do we organize the kernel directory ]
18
#include "paddle/pten/api/lib/utils/storage.h"
19
#include "paddle/pten/include/infermeta.h"
C
chentianyu03 已提交
20
#include "paddle/pten/kernels/cpu/conj_kernel.h"
21
#include "paddle/pten/kernels/cpu/math.h"
22 23
#include "paddle/pten/kernels/gpu/conj_kernel.h"
#include "paddle/pten/kernels/gpu/math.h"
24
#include "paddle/pten/kernels/scale_kernel.h"
25 26 27 28 29

namespace pten {

template <typename T, typename ContextT>
DenseTensor Sign(const ContextT& dev_ctx, const DenseTensor& x) {
30
  auto out_meta = UnchangedInferMeta(x.meta());
31 32 33 34
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
35 36 37 38 39
  Sign<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
40 41 42 43 44
DenseTensor Mean(const ContextT& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
45 46 47 48
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
49
  bool reduce_all = false;
50
  Mean<T>(dev_ctx, x, axis, keep_dim, reduce_all, &dense_out);
51 52 53 54 55 56 57 58 59
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Sum(const ContextT& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
60
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim, dtype);
61 62 63 64
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      out_meta);
65 66 67 68 69

  // The real value of reduce_all will be get in kernel
  // so use default value(false) is OK.
  bool reduce_all = false;

70
  Sum<T>(dev_ctx, x, axis, keep_dim, reduce_all, out_meta.dtype, &dense_out);
71 72 73 74 75 76
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
C
Chen Weihang 已提交
77
                  const Scalar& scale,
78 79
                  float bias,
                  bool bias_after_scale) {
80
  auto out_meta = UnchangedInferMeta(x.meta());
81 82 83 84
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
85
  Scale<T, ContextT>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
86 87 88 89
  return dense_out;
}

template <typename T, typename ContextT>
90 91 92 93
DenseTensor Add(const ContextT& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
94
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
95 96 97 98
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
99
  Add<T>(dev_ctx, x, y, axis, &dense_out);
100 101
  return dense_out;
}
102 103 104 105 106 107

template <typename T, typename ContextT>
DenseTensor Subtract(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
108
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
109 110 111 112
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
113
  Subtract<T>(dev_ctx, x, y, axis, &dense_out);
114 115 116
  return dense_out;
}

117 118 119 120 121
template <typename T, typename ContextT>
DenseTensor Divide(const ContextT& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
122
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
123 124 125 126
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
127
  Divide<T>(dev_ctx, x, y, axis, &dense_out);
128 129
  return dense_out;
}
Y
YuanRisheng 已提交
130 131 132 133 134 135

template <typename T, typename ContextT>
DenseTensor Multiply(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
136
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
137 138 139 140
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
141
  Multiply<T>(dev_ctx, x, y, axis, &dense_out);
Y
YuanRisheng 已提交
142 143
  return dense_out;
}
C
chentianyu03 已提交
144 145 146 147 148 149 150 151 152 153 154 155

template <typename T, typename ContextT>
DenseTensor Conj(const ContextT& dev_ctx, const DenseTensor& x) {
  auto out_meta = UnchangedInferMeta(x.meta());
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
  Conj<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

156
}  // namespace pten