math.h 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note: [ How do we organize the kernel directory ]
#include "paddle/pten/api/lib/utils/allocator.h"
19
#include "paddle/pten/include/infermeta.h"
20 21 22 23 24 25 26
#include "paddle/pten/kernels/cpu/math.h"
#include "paddle/pten/kernels/cuda/math.h"

namespace pten {

template <typename T, typename ContextT>
DenseTensor Sign(const ContextT& dev_ctx, const DenseTensor& x) {
27
  auto out_meta = UnchangedInferMeta(x.meta());
28 29 30 31 32 33 34 35 36 37
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  Sign<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Mean(const ContextT& dev_ctx, const DenseTensor& x) {
38
  auto out_meta = ReductionInferMeta(x.meta());
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  Mean<T>(dev_ctx, x, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
                  float scale,
                  float bias,
                  bool bias_after_scale) {
53
  auto out_meta = UnchangedInferMeta(x.meta());
54 55 56 57 58 59 60 61 62 63 64 65 66 67
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  Scale<T>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
  return dense_out;
}

template <typename T, typename ContextT>
DenseTensor Scale(const ContextT& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& scale,
                  float bias,
                  bool bias_after_scale) {
68
  auto out_meta = UnchangedInferMeta(x.meta());
69 70 71 72 73 74 75
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ScaleHost<T>(dev_ctx, x, scale, bias, bias_after_scale, &dense_out);
  return dense_out;
}
76 77

template <typename T, typename ContextT>
78 79 80 81
DenseTensor Add(const ContextT& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
82
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
83 84 85 86 87 88 89
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseAdd<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
90 91 92 93 94 95

template <typename T, typename ContextT>
DenseTensor Subtract(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
96
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
97 98 99 100 101 102 103 104
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseSub<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}

105 106 107 108 109
template <typename T, typename ContextT>
DenseTensor Divide(const ContextT& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
110
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
111 112 113 114 115 116 117
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseDiv<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
Y
YuanRisheng 已提交
118 119 120 121 122 123

template <typename T, typename ContextT>
DenseTensor Multiply(const ContextT& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
124
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
Y
YuanRisheng 已提交
125 126 127 128 129 130 131
  const auto allocator =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          dev_ctx.GetPlace());
  pten::DenseTensor dense_out(allocator, out_meta);
  ElementwiseMul<T>(dev_ctx, x, y, axis, &dense_out);
  return dense_out;
}
132
}  // namespace pten