resnet.py 23.6 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

L
LielinJiang 已提交
18 19
import paddle
import paddle.nn as nn
L
LielinJiang 已提交
20

21
from paddle.utils.download import get_weights_path_from_url
L
LielinJiang 已提交
22

23
__all__ = []
L
LielinJiang 已提交
24 25 26

model_urls = {
    'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams',
L
LielinJiang 已提交
27
                 'cf548f46534aa3560945be4b95cd11c4'),
L
LielinJiang 已提交
28
    'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams',
L
LielinJiang 已提交
29
                 '8d2275cf8706028345f78ac0e1d31969'),
L
LielinJiang 已提交
30
    'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',
L
LielinJiang 已提交
31
                 'ca6f485ee1ab0492d38f323885b0ad80'),
L
LielinJiang 已提交
32
    'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams',
L
LielinJiang 已提交
33
                  '02f35f034ca3858e1e54d4036443c92d'),
L
LielinJiang 已提交
34
    'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams',
L
LielinJiang 已提交
35
                  '7ad16a2f1e7333859ff986138630fd7a'),
36 37 38 39 40 41
    'resnext50_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext50_32x4d.pdparams',
     'dc47483169be7d6f018fcbb7baf8775d'),
    "resnext50_64x4d":
    ('https://paddle-hapi.bj.bcebos.com/models/resnext50_64x4d.pdparams',
     '063d4b483e12b06388529450ad7576db'),
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'resnext101_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext101_32x4d.pdparams',
     '967b090039f9de2c8d06fe994fb9095f'),
    'resnext101_64x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext101_64x4d.pdparams',
     '98e04e7ca616a066699230d769d03008'),
    'resnext152_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext152_32x4d.pdparams',
     '18ff0beee21f2efc99c4b31786107121'),
    'resnext152_64x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext152_64x4d.pdparams',
     '77c4af00ca42c405fa7f841841959379'),
    'wide_resnet50_2':
    ('https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams',
     '0282f804d73debdab289bd9fea3fa6dc'),
    'wide_resnet101_2':
    ('https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams',
     'd4360a2d23657f059216f5d5a1a9ac93'),
L
LielinJiang 已提交
60 61 62
}


L
LielinJiang 已提交
63 64 65
class BasicBlock(nn.Layer):
    expansion = 1

L
LielinJiang 已提交
66
    def __init__(self,
L
LielinJiang 已提交
67 68
                 inplanes,
                 planes,
L
LielinJiang 已提交
69
                 stride=1,
L
LielinJiang 已提交
70
                 downsample=None,
L
LielinJiang 已提交
71
                 groups=1,
L
LielinJiang 已提交
72 73 74
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
L
LielinJiang 已提交
75
        super(BasicBlock, self).__init__()
L
LielinJiang 已提交
76
        if norm_layer is None:
C
cnn 已提交
77
            norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
78

L
LielinJiang 已提交
79 80 81
        if dilation > 1:
            raise NotImplementedError(
                "Dilation > 1 not supported in BasicBlock")
L
LielinJiang 已提交
82

83 84 85 86 87 88
        self.conv1 = nn.Conv2D(inplanes,
                               planes,
                               3,
                               padding=1,
                               stride=stride,
                               bias_attr=False)
L
LielinJiang 已提交
89 90
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU()
C
cnn 已提交
91
        self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False)
L
LielinJiang 已提交
92 93 94
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride
L
LielinJiang 已提交
95

L
LielinJiang 已提交
96 97
    def forward(self, x):
        identity = x
L
LielinJiang 已提交
98

L
LielinJiang 已提交
99 100 101
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
L
LielinJiang 已提交
102

L
LielinJiang 已提交
103 104
        out = self.conv2(out)
        out = self.bn2(out)
L
LielinJiang 已提交
105

L
LielinJiang 已提交
106 107
        if self.downsample is not None:
            identity = self.downsample(x)
L
LielinJiang 已提交
108

L
LielinJiang 已提交
109 110
        out += identity
        out = self.relu(out)
L
LielinJiang 已提交
111

L
LielinJiang 已提交
112
        return out
L
LielinJiang 已提交
113

L
LielinJiang 已提交
114 115

class BottleneckBlock(nn.Layer):
L
LielinJiang 已提交
116 117 118

    expansion = 4

L
LielinJiang 已提交
119 120 121 122 123 124 125 126 127
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
L
LielinJiang 已提交
128
        super(BottleneckBlock, self).__init__()
L
LielinJiang 已提交
129
        if norm_layer is None:
C
cnn 已提交
130
            norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
131 132
        width = int(planes * (base_width / 64.)) * groups

C
cnn 已提交
133
        self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False)
L
LielinJiang 已提交
134 135
        self.bn1 = norm_layer(width)

136 137 138 139 140 141 142 143
        self.conv2 = nn.Conv2D(width,
                               width,
                               3,
                               padding=dilation,
                               stride=stride,
                               groups=groups,
                               dilation=dilation,
                               bias_attr=False)
L
LielinJiang 已提交
144
        self.bn2 = norm_layer(width)
L
LielinJiang 已提交
145

146 147 148 149
        self.conv3 = nn.Conv2D(width,
                               planes * self.expansion,
                               1,
                               bias_attr=False)
L
LielinJiang 已提交
150 151 152 153
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride
L
LielinJiang 已提交
154

L
LielinJiang 已提交
155 156
    def forward(self, x):
        identity = x
L
LielinJiang 已提交
157

L
LielinJiang 已提交
158 159 160
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
L
LielinJiang 已提交
161

L
LielinJiang 已提交
162 163 164
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
L
LielinJiang 已提交
165

L
LielinJiang 已提交
166 167
        out = self.conv3(out)
        out = self.bn3(out)
L
LielinJiang 已提交
168

L
LielinJiang 已提交
169 170
        if self.downsample is not None:
            identity = self.downsample(x)
L
LielinJiang 已提交
171

L
LielinJiang 已提交
172 173
        out += identity
        out = self.relu(out)
L
LielinJiang 已提交
174

L
LielinJiang 已提交
175
        return out
L
LielinJiang 已提交
176

L
LielinJiang 已提交
177 178

class ResNet(nn.Layer):
L
LielinJiang 已提交
179 180 181 182 183
    """ResNet model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        Block (BasicBlock|BottleneckBlock): block module of model.
N
Nyakku Shigure 已提交
184
        depth (int, optional): layers of ResNet, Default: 50.
185 186
        width (int, optional): base width per convolution group for each convolution block, Default: 64.
        num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
L
LielinJiang 已提交
187
                            will not be defined. Default: 1000.
188 189
        with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
        groups (int, optional): number of groups for each convolution block, Default: 1.
L
LielinJiang 已提交
190

N
Nyakku Shigure 已提交
191 192 193
    Returns:
        ResNet model. An instance of :ref:`api_fluid_dygraph_Layer`.

L
LielinJiang 已提交
194 195 196
    Examples:
        .. code-block:: python

197
            import paddle
198 199
            from paddle.vision.models import ResNet
            from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
L
LielinJiang 已提交
200

201 202 203 204
            # build ResNet with 18 layers
            resnet18 = ResNet(BasicBlock, 18)

            # build ResNet with 50 layers
L
LielinJiang 已提交
205 206
            resnet50 = ResNet(BottleneckBlock, 50)

207
            # build Wide ResNet model
208 209
            wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)

210 211
            # build ResNeXt model
            resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32)
L
LielinJiang 已提交
212

213 214 215 216
            x = paddle.rand([1, 3, 224, 224])
            out = resnet18(x)

            print(out.shape)
217
            # [1, 1000]
218

L
LielinJiang 已提交
219 220
    """

221 222 223 224 225
    def __init__(self,
                 block,
                 depth=50,
                 width=64,
                 num_classes=1000,
226 227
                 with_pool=True,
                 groups=1):
L
LielinJiang 已提交
228
        super(ResNet, self).__init__()
L
LielinJiang 已提交
229
        layer_cfg = {
L
LielinJiang 已提交
230 231 232 233
            18: [2, 2, 2, 2],
            34: [3, 4, 6, 3],
            50: [3, 4, 6, 3],
            101: [3, 4, 23, 3],
L
LielinJiang 已提交
234
            152: [3, 8, 36, 3]
L
LielinJiang 已提交
235
        }
L
LielinJiang 已提交
236
        layers = layer_cfg[depth]
237
        self.groups = groups
238
        self.base_width = width
L
LielinJiang 已提交
239 240
        self.num_classes = num_classes
        self.with_pool = with_pool
C
cnn 已提交
241
        self._norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
242 243 244

        self.inplanes = 64
        self.dilation = 1
L
LielinJiang 已提交
245

246 247 248 249 250 251
        self.conv1 = nn.Conv2D(3,
                               self.inplanes,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias_attr=False)
L
LielinJiang 已提交
252 253
        self.bn1 = self._norm_layer(self.inplanes)
        self.relu = nn.ReLU()
C
cnn 已提交
254
        self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
L
LielinJiang 已提交
255 256 257 258
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
L
LielinJiang 已提交
259
        if with_pool:
C
cnn 已提交
260
            self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
L
LielinJiang 已提交
261 262

        if num_classes > 0:
L
LielinJiang 已提交
263 264 265 266 267 268 269 270 271 272 273
            self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
274 275 276 277 278 279 280
                nn.Conv2D(self.inplanes,
                          planes * block.expansion,
                          1,
                          stride=stride,
                          bias_attr=False),
                norm_layer(planes * block.expansion),
            )
L
LielinJiang 已提交
281 282 283

        layers = []
        layers.append(
284 285
            block(self.inplanes, planes, stride, downsample, self.groups,
                  self.base_width, previous_dilation, norm_layer))
L
LielinJiang 已提交
286 287
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
288
            layers.append(
289 290 291 292 293
                block(self.inplanes,
                      planes,
                      groups=self.groups,
                      base_width=self.base_width,
                      norm_layer=norm_layer))
L
LielinJiang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

L
LielinJiang 已提交
307
        if self.with_pool:
L
LielinJiang 已提交
308 309 310 311
            x = self.avgpool(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
L
LielinJiang 已提交
312
            x = self.fc(x)
L
LielinJiang 已提交
313

L
LielinJiang 已提交
314 315 316 317 318 319 320 321 322 323
        return x


def _resnet(arch, Block, depth, pretrained, **kwargs):
    model = ResNet(Block, depth, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
324 325

        param = paddle.load(weight_path)
326 327
        model.set_dict(param)

L
LielinJiang 已提交
328 329 330 331
    return model


def resnet18(pretrained=False, **kwargs):
332 333 334
    """ResNet 18-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

L
LielinJiang 已提交
335
    Args:
N
Nyakku Shigure 已提交
336 337 338 339 340
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 18-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.
L
LielinJiang 已提交
341 342 343 344

    Examples:
        .. code-block:: python

345
            import paddle
346
            from paddle.vision.models import resnet18
L
LielinJiang 已提交
347 348 349 350 351 352

            # build model
            model = resnet18()

            # build model and load imagenet pretrained weight
            # model = resnet18(pretrained=True)
353 354 355 356 357

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
358
            # [1, 1000]
L
LielinJiang 已提交
359 360 361 362 363
    """
    return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs)


def resnet34(pretrained=False, **kwargs):
364 365 366
    """ResNet 34-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

L
LielinJiang 已提交
367
    Args:
N
Nyakku Shigure 已提交
368 369 370 371 372
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 34-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.
373

L
LielinJiang 已提交
374 375 376
    Examples:
        .. code-block:: python

377
            import paddle
378
            from paddle.vision.models import resnet34
L
LielinJiang 已提交
379 380 381 382 383 384

            # build model
            model = resnet34()

            # build model and load imagenet pretrained weight
            # model = resnet34(pretrained=True)
385 386 387 388 389

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
390
            # [1, 1000]
L
LielinJiang 已提交
391 392 393 394 395
    """
    return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs)


def resnet50(pretrained=False, **kwargs):
396 397 398
    """ResNet 50-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

L
LielinJiang 已提交
399
    Args:
N
Nyakku Shigure 已提交
400 401 402 403 404
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 50-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.
L
LielinJiang 已提交
405 406 407 408

    Examples:
        .. code-block:: python

409
            import paddle
410
            from paddle.vision.models import resnet50
L
LielinJiang 已提交
411 412 413 414 415 416

            # build model
            model = resnet50()

            # build model and load imagenet pretrained weight
            # model = resnet50(pretrained=True)
417 418 419 420 421

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
422
            # [1, 1000]
L
LielinJiang 已提交
423 424 425 426 427
    """
    return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs)


def resnet101(pretrained=False, **kwargs):
428 429 430
    """ResNet 101-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

L
LielinJiang 已提交
431
    Args:
N
Nyakku Shigure 已提交
432 433 434 435 436
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 101-layer. An instance of :ref:`api_fluid_dygraph_Layer`.
L
LielinJiang 已提交
437 438 439 440

    Examples:
        .. code-block:: python

441
            import paddle
442
            from paddle.vision.models import resnet101
L
LielinJiang 已提交
443 444 445 446 447 448

            # build model
            model = resnet101()

            # build model and load imagenet pretrained weight
            # model = resnet101(pretrained=True)
449 450 451 452 453

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
454
            # [1, 1000]
L
LielinJiang 已提交
455 456 457 458 459
    """
    return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs)


def resnet152(pretrained=False, **kwargs):
460 461 462
    """ResNet 152-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

L
LielinJiang 已提交
463
    Args:
N
Nyakku Shigure 已提交
464 465 466 467 468
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 152-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.
L
LielinJiang 已提交
469 470 471 472

    Examples:
        .. code-block:: python

473
            import paddle
474
            from paddle.vision.models import resnet152
L
LielinJiang 已提交
475 476 477 478 479 480

            # build model
            model = resnet152()

            # build model and load imagenet pretrained weight
            # model = resnet152(pretrained=True)
481 482 483 484 485

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
486
            # [1, 1000]
L
LielinJiang 已提交
487 488
    """
    return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)
489 490


491 492 493 494 495
def resnext50_32x4d(pretrained=False, **kwargs):
    """ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
N
Nyakku Shigure 已提交
496 497 498 499 500
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-50 32x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext50_32x4d

            # build model
            model = resnext50_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext50_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext50_32x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext50_64x4d(pretrained=False, **kwargs):
    """ResNeXt-50 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
N
Nyakku Shigure 已提交
530 531 532 533 534
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-50 64x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext50_64x4d

            # build model
            model = resnext50_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext50_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext50_64x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext101_32x4d(pretrained=False, **kwargs):
    """ResNeXt-101 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
N
Nyakku Shigure 已提交
564 565 566 567 568
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-101 32x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext101_32x4d

            # build model
            model = resnext101_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext101_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext101_32x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext101_64x4d(pretrained=False, **kwargs):
    """ResNeXt-101 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
N
Nyakku Shigure 已提交
599 600 601 602 603
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-101 64x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext101_64x4d

            # build model
            model = resnext101_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext101_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext101_64x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext152_32x4d(pretrained=False, **kwargs):
    """ResNeXt-152 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
N
Nyakku Shigure 已提交
634 635 636 637 638
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-152 32x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext152_32x4d

            # build model
            model = resnext152_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext152_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext152_32x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


def resnext152_64x4d(pretrained=False, **kwargs):
    """ResNeXt-152 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
N
Nyakku Shigure 已提交
669 670 671 672 673
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-152 64x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext152_64x4d

            # build model
            model = resnext152_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext152_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext152_64x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


699 700 701 702 703
def wide_resnet50_2(pretrained=False, **kwargs):
    """Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    Args:
N
Nyakku Shigure 已提交
704 705 706 707 708
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        Wide ResNet-50-2 model. An instance of :ref:`api_fluid_dygraph_Layer`.
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import wide_resnet50_2

            # build model
            model = wide_resnet50_2()

            # build model and load imagenet pretrained weight
            # model = wide_resnet50_2(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
726
            # [1, 1000]
727 728 729 730 731 732 733 734 735 736
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs)


def wide_resnet101_2(pretrained=False, **kwargs):
    """Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    Args:
N
Nyakku Shigure 已提交
737 738 739 740 741
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        Wide ResNet-101-2 model. An instance of :ref:`api_fluid_dygraph_Layer`.
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import wide_resnet101_2

            # build model
            model = wide_resnet101_2()

            # build model and load imagenet pretrained weight
            # model = wide_resnet101_2(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
759
            # [1, 1000]
760 761 762 763
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet101_2', BottleneckBlock, 101, pretrained,
                   **kwargs)