Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
ba4e7c7e
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba4e7c7e
编写于
4月 25, 2022
作者:
N
Nyakku Shigure
提交者:
GitHub
4月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
reimplement ResNeXt based on ResNet (#40588)
* refactor resnext
上级
6721376b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
256 addition
and
405 deletion
+256
-405
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+6
-7
python/paddle/vision/models/__init__.py
python/paddle/vision/models/__init__.py
+12
-14
python/paddle/vision/models/resnet.py
python/paddle/vision/models/resnet.py
+238
-20
python/paddle/vision/models/resnext.py
python/paddle/vision/models/resnext.py
+0
-364
未找到文件。
python/paddle/vision/__init__.py
浏览文件 @
ba4e7c7e
...
...
@@ -34,6 +34,12 @@ from .models import resnet34 # noqa: F401
from
.models
import
resnet50
# noqa: F401
from
.models
import
resnet101
# noqa: F401
from
.models
import
resnet152
# noqa: F401
from
.models
import
resnext50_32x4d
# noqa: F401
from
.models
import
resnext50_64x4d
# noqa: F401
from
.models
import
resnext101_32x4d
# noqa: F401
from
.models
import
resnext101_64x4d
# noqa: F401
from
.models
import
resnext152_32x4d
# noqa: F401
from
.models
import
resnext152_64x4d
# noqa: F401
from
.models
import
wide_resnet50_2
# noqa: F401
from
.models
import
wide_resnet101_2
# noqa: F401
from
.models
import
MobileNetV1
# noqa: F401
...
...
@@ -61,13 +67,6 @@ from .models import densenet201 # noqa: F401
from
.models
import
densenet264
# noqa: F401
from
.models
import
AlexNet
# noqa: F401
from
.models
import
alexnet
# noqa: F401
from
.models
import
ResNeXt
# noqa: F401
from
.models
import
resnext50_32x4d
# noqa: F401
from
.models
import
resnext50_64x4d
# noqa: F401
from
.models
import
resnext101_32x4d
# noqa: F401
from
.models
import
resnext101_64x4d
# noqa: F401
from
.models
import
resnext152_32x4d
# noqa: F401
from
.models
import
resnext152_64x4d
# noqa: F401
from
.models
import
InceptionV3
# noqa: F401
from
.models
import
inception_v3
# noqa: F401
from
.models
import
GoogLeNet
# noqa: F401
...
...
python/paddle/vision/models/__init__.py
浏览文件 @
ba4e7c7e
...
...
@@ -18,6 +18,12 @@ from .resnet import resnet34 # noqa: F401
from
.resnet
import
resnet50
# noqa: F401
from
.resnet
import
resnet101
# noqa: F401
from
.resnet
import
resnet152
# noqa: F401
from
.resnet
import
resnext50_32x4d
# noqa: F401
from
.resnet
import
resnext50_64x4d
# noqa: F401
from
.resnet
import
resnext101_32x4d
# noqa: F401
from
.resnet
import
resnext101_64x4d
# noqa: F401
from
.resnet
import
resnext152_32x4d
# noqa: F401
from
.resnet
import
resnext152_64x4d
# noqa: F401
from
.resnet
import
wide_resnet50_2
# noqa: F401
from
.resnet
import
wide_resnet101_2
# noqa: F401
from
.mobilenetv1
import
MobileNetV1
# noqa: F401
...
...
@@ -42,13 +48,6 @@ from .densenet import densenet201 # noqa: F401
from
.densenet
import
densenet264
# noqa: F401
from
.alexnet
import
AlexNet
# noqa: F401
from
.alexnet
import
alexnet
# noqa: F401
from
.resnext
import
ResNeXt
# noqa: F401
from
.resnext
import
resnext50_32x4d
# noqa: F401
from
.resnext
import
resnext50_64x4d
# noqa: F401
from
.resnext
import
resnext101_32x4d
# noqa: F401
from
.resnext
import
resnext101_64x4d
# noqa: F401
from
.resnext
import
resnext152_32x4d
# noqa: F401
from
.resnext
import
resnext152_64x4d
# noqa: F401
from
.inceptionv3
import
InceptionV3
# noqa: F401
from
.inceptionv3
import
inception_v3
# noqa: F401
from
.squeezenet
import
SqueezeNet
# noqa: F401
...
...
@@ -72,6 +71,12 @@ __all__ = [ #noqa
'resnet50'
,
'resnet101'
,
'resnet152'
,
'resnext50_32x4d'
,
'resnext50_64x4d'
,
'resnext101_32x4d'
,
'resnext101_64x4d'
,
'resnext152_32x4d'
,
'resnext152_64x4d'
,
'wide_resnet50_2'
,
'wide_resnet101_2'
,
'VGG'
,
...
...
@@ -96,13 +101,6 @@ __all__ = [ #noqa
'densenet264'
,
'AlexNet'
,
'alexnet'
,
'ResNeXt'
,
'resnext50_32x4d'
,
'resnext50_64x4d'
,
'resnext101_32x4d'
,
'resnext101_64x4d'
,
'resnext152_32x4d'
,
'resnext152_64x4d'
,
'InceptionV3'
,
'inception_v3'
,
'SqueezeNet'
,
...
...
python/paddle/vision/models/resnet.py
浏览文件 @
ba4e7c7e
...
...
@@ -33,12 +33,30 @@ model_urls = {
'02f35f034ca3858e1e54d4036443c92d'
),
'resnet152'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams'
,
'7ad16a2f1e7333859ff986138630fd7a'
),
'wide_resnet50_2'
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams'
,
'0282f804d73debdab289bd9fea3fa6dc'
),
'wide_resnet101_2'
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams'
,
'd4360a2d23657f059216f5d5a1a9ac93'
),
'resnext50_32x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext50_32x4d.pdparams'
,
'dc47483169be7d6f018fcbb7baf8775d'
),
"resnext50_64x4d"
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext50_64x4d.pdparams'
,
'063d4b483e12b06388529450ad7576db'
),
'resnext101_32x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext101_32x4d.pdparams'
,
'967b090039f9de2c8d06fe994fb9095f'
),
'resnext101_64x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext101_64x4d.pdparams'
,
'98e04e7ca616a066699230d769d03008'
),
'resnext152_32x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext152_32x4d.pdparams'
,
'18ff0beee21f2efc99c4b31786107121'
),
'resnext152_64x4d'
:
(
'https://paddle-hapi.bj.bcebos.com/models/resnext152_64x4d.pdparams'
,
'77c4af00ca42c405fa7f841841959379'
),
'wide_resnet50_2'
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams'
,
'0282f804d73debdab289bd9fea3fa6dc'
),
'wide_resnet101_2'
:
(
'https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams'
,
'd4360a2d23657f059216f5d5a1a9ac93'
),
}
...
...
@@ -158,11 +176,12 @@ class ResNet(nn.Layer):
Args:
Block (BasicBlock|BottleneckBlock): block module of model.
depth (int
): layers of resnet, d
efault: 50.
width (int
): base width of resnet, d
efault: 64.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
depth (int
, optional): layers of resnet, D
efault: 50.
width (int
, optional): base width per convolution group for each convolution block, D
efault: 64.
num_classes (int
, optional
): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
groups (int, optional): number of groups for each convolution block, Default: 1.
Examples:
.. code-block:: python
...
...
@@ -171,16 +190,23 @@ class ResNet(nn.Layer):
from paddle.vision.models import ResNet
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
# build ResNet with 18 layers
resnet18 = ResNet(BasicBlock, 18)
# build ResNet with 50 layers
resnet50 = ResNet(BottleneckBlock, 50)
# build Wide ResNet model
wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)
resnet18 = ResNet(BasicBlock, 18)
# build ResNeXt model
resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32)
x = paddle.rand([1, 3, 224, 224])
out = resnet18(x)
print(out.shape)
# [1, 1000]
"""
...
...
@@ -189,7 +215,8 @@ class ResNet(nn.Layer):
depth
=
50
,
width
=
64
,
num_classes
=
1000
,
with_pool
=
True
):
with_pool
=
True
,
groups
=
1
):
super
(
ResNet
,
self
).
__init__
()
layer_cfg
=
{
18
:
[
2
,
2
,
2
,
2
],
...
...
@@ -199,7 +226,7 @@ class ResNet(nn.Layer):
152
:
[
3
,
8
,
36
,
3
]
}
layers
=
layer_cfg
[
depth
]
self
.
groups
=
1
self
.
groups
=
groups
self
.
base_width
=
width
self
.
num_classes
=
num_classes
self
.
with_pool
=
with_pool
...
...
@@ -300,7 +327,7 @@ def resnet18(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
...
...
@@ -318,6 +345,7 @@ def resnet18(pretrained=False, **kwargs):
out = model(x)
print(out.shape)
# [1, 1000]
"""
return
_resnet
(
'resnet18'
,
BasicBlock
,
18
,
pretrained
,
**
kwargs
)
...
...
@@ -327,7 +355,7 @@ def resnet34(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
...
...
@@ -345,6 +373,7 @@ def resnet34(pretrained=False, **kwargs):
out = model(x)
print(out.shape)
# [1, 1000]
"""
return
_resnet
(
'resnet34'
,
BasicBlock
,
34
,
pretrained
,
**
kwargs
)
...
...
@@ -354,7 +383,7 @@ def resnet50(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
...
...
@@ -372,6 +401,7 @@ def resnet50(pretrained=False, **kwargs):
out = model(x)
print(out.shape)
# [1, 1000]
"""
return
_resnet
(
'resnet50'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
...
...
@@ -381,7 +411,7 @@ def resnet101(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
...
...
@@ -399,6 +429,7 @@ def resnet101(pretrained=False, **kwargs):
out = model(x)
print(out.shape)
# [1, 1000]
"""
return
_resnet
(
'resnet101'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
...
...
@@ -408,7 +439,7 @@ def resnet152(pretrained=False, **kwargs):
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
...
...
@@ -426,16 +457,201 @@ def resnet152(pretrained=False, **kwargs):
out = model(x)
print(out.shape)
# [1, 1000]
"""
return
_resnet
(
'resnet152'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
def
resnext50_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_32x4d
# build model
model = resnext50_32x4d()
# build model and load imagenet pretrained weight
# model = resnext50_32x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext50_32x4d'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
def
resnext50_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_64x4d
# build model
model = resnext50_64x4d()
# build model and load imagenet pretrained weight
# model = resnext50_64x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
64
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext50_64x4d'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
def
resnext101_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_32x4d
# build model
model = resnext101_32x4d()
# build model and load imagenet pretrained weight
# model = resnext101_32x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext101_32x4d'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
def
resnext101_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_64x4d
# build model
model = resnext101_64x4d()
# build model and load imagenet pretrained weight
# model = resnext101_64x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
64
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext101_64x4d'
,
BottleneckBlock
,
101
,
pretrained
,
**
kwargs
)
def
resnext152_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_32x4d
# build model
model = resnext152_32x4d()
# build model and load imagenet pretrained weight
# model = resnext152_32x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
32
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext152_32x4d'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
def
resnext152_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_64x4d
# build model
model = resnext152_64x4d()
# build model and load imagenet pretrained weight
# model = resnext152_64x4d(pretrained=True)
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'groups'
]
=
64
kwargs
[
'width'
]
=
4
return
_resnet
(
'resnext152_64x4d'
,
BottleneckBlock
,
152
,
pretrained
,
**
kwargs
)
def
wide_resnet50_2
(
pretrained
=
False
,
**
kwargs
):
"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
...
...
@@ -453,6 +669,7 @@ def wide_resnet50_2(pretrained=False, **kwargs):
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'width'
]
=
64
*
2
return
_resnet
(
'wide_resnet50_2'
,
BottleneckBlock
,
50
,
pretrained
,
**
kwargs
)
...
...
@@ -463,7 +680,7 @@ def wide_resnet101_2(pretrained=False, **kwargs):
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
Args:
pretrained (bool
): If True, returns a model pre-trained on ImageNet
pretrained (bool
, optional): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
...
...
@@ -481,6 +698,7 @@ def wide_resnet101_2(pretrained=False, **kwargs):
out = model(x)
print(out.shape)
# [1, 1000]
"""
kwargs
[
'width'
]
=
64
*
2
return
_resnet
(
'wide_resnet101_2'
,
BottleneckBlock
,
101
,
pretrained
,
...
...
python/paddle/vision/models/resnext.py
已删除
100644 → 0
浏览文件 @
6721376b
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.nn
import
AdaptiveAvgPool2D
,
BatchNorm
,
Conv2D
,
Linear
,
MaxPool2D
from
paddle.nn.initializer
import
Uniform
from
paddle.utils.download
import
get_weights_path_from_url
__all__
=
[]
model_urls
=
{
'resnext50_32x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams'
,
'bf04add2f7fd22efcbe91511bcd1eebe'
),
"resnext50_64x4d"
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams'
,
'46307df0e2d6d41d3b1c1d22b00abc69'
),
'resnext101_32x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams'
,
'078ca145b3bea964ba0544303a43c36d'
),
'resnext101_64x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams'
,
'4edc0eb32d3cc5d80eff7cab32cd5c64'
),
'resnext152_32x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams'
,
'7971cc994d459af167c502366f866378'
),
'resnext152_64x4d'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams'
,
'836943f03709efec364d486c57d132de'
),
}
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv
(
inputs
)
x
=
self
.
_batch_norm
(
x
)
return
x
class
BottleneckBlock
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
stride
,
cardinality
,
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
groups
=
cardinality
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
num_channels
=
num_filters
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
act
=
None
)
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
num_channels
=
num_channels
,
num_filters
=
num_filters
*
2
if
cardinality
==
32
else
num_filters
,
filter_size
=
1
,
stride
=
stride
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
):
x
=
self
.
conv0
(
inputs
)
conv1
=
self
.
conv1
(
x
)
conv2
=
self
.
conv2
(
conv1
)
if
self
.
shortcut
:
short
=
inputs
else
:
short
=
self
.
short
(
inputs
)
x
=
paddle
.
add
(
x
=
short
,
y
=
conv2
)
x
=
F
.
relu
(
x
)
return
x
class
ResNeXt
(
nn
.
Layer
):
"""ResNeXt model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
depth (int, optional): depth of resnext. Default: 50.
cardinality (int, optional): cardinality of resnext. Default: 32.
num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import ResNeXt
resnext50_32x4d = ResNeXt(depth=50, cardinality=32)
"""
def
__init__
(
self
,
depth
=
50
,
cardinality
=
32
,
num_classes
=
1000
,
with_pool
=
True
):
super
(
ResNeXt
,
self
).
__init__
()
self
.
depth
=
depth
self
.
cardinality
=
cardinality
self
.
num_classes
=
num_classes
self
.
with_pool
=
with_pool
supported_depth
=
[
50
,
101
,
152
]
assert
depth
in
supported_depth
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_depth
,
depth
)
supported_cardinality
=
[
32
,
64
]
assert
cardinality
in
supported_cardinality
,
\
"supported cardinality is {} but input cardinality is {}"
\
.
format
(
supported_cardinality
,
cardinality
)
layer_cfg
=
{
50
:
[
3
,
4
,
6
,
3
],
101
:
[
3
,
4
,
23
,
3
],
152
:
[
3
,
8
,
36
,
3
]}
layers
=
layer_cfg
[
depth
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
128
,
256
,
512
,
1024
]
if
cardinality
==
32
else
[
256
,
512
,
1024
,
2048
]
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
block_list
=
[]
for
block
in
range
(
len
(
layers
)):
shortcut
=
False
for
i
in
range
(
layers
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
int
(
64
//
self
.
cardinality
),
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
cardinality
=
self
.
cardinality
,
shortcut
=
shortcut
))
self
.
block_list
.
append
(
bottleneck_block
)
shortcut
=
True
if
with_pool
:
self
.
pool2d_avg
=
AdaptiveAvgPool2D
(
1
)
if
num_classes
>
0
:
self
.
pool2d_avg_channels
=
num_channels
[
-
1
]
*
2
stdv
=
1.0
/
math
.
sqrt
(
self
.
pool2d_avg_channels
*
1.0
)
self
.
out
=
Linear
(
self
.
pool2d_avg_channels
,
num_classes
,
weight_attr
=
ParamAttr
(
initializer
=
Uniform
(
-
stdv
,
stdv
)))
def
forward
(
self
,
inputs
):
with
paddle
.
static
.
amp
.
fp16_guard
():
x
=
self
.
conv
(
inputs
)
x
=
self
.
pool2d_max
(
x
)
for
block
in
self
.
block_list
:
x
=
block
(
x
)
if
self
.
with_pool
:
x
=
self
.
pool2d_avg
(
x
)
if
self
.
num_classes
>
0
:
x
=
paddle
.
reshape
(
x
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
x
=
self
.
out
(
x
)
return
x
def
_resnext
(
arch
,
depth
,
cardinality
,
pretrained
,
**
kwargs
):
model
=
ResNeXt
(
depth
=
depth
,
cardinality
=
cardinality
,
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
model_urls
[
arch
][
0
],
model_urls
[
arch
][
1
])
param
=
paddle
.
load
(
weight_path
)
model
.
set_dict
(
param
)
return
model
def
resnext50_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_32x4d
# build model
model = resnext50_32x4d()
# build model and load imagenet pretrained weight
# model = resnext50_32x4d(pretrained=True)
"""
return
_resnext
(
'resnext50_32x4d'
,
50
,
32
,
pretrained
,
**
kwargs
)
def
resnext50_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-50 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_64x4d
# build model
model = resnext50_64x4d()
# build model and load imagenet pretrained weight
# model = resnext50_64x4d(pretrained=True)
"""
return
_resnext
(
'resnext50_64x4d'
,
50
,
64
,
pretrained
,
**
kwargs
)
def
resnext101_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_32x4d
# build model
model = resnext101_32x4d()
# build model and load imagenet pretrained weight
# model = resnext101_32x4d(pretrained=True)
"""
return
_resnext
(
'resnext101_32x4d'
,
101
,
32
,
pretrained
,
**
kwargs
)
def
resnext101_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-101 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_64x4d
# build model
model = resnext101_64x4d()
# build model and load imagenet pretrained weight
# model = resnext101_64x4d(pretrained=True)
"""
return
_resnext
(
'resnext101_64x4d'
,
101
,
64
,
pretrained
,
**
kwargs
)
def
resnext152_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_32x4d
# build model
model = resnext152_32x4d()
# build model and load imagenet pretrained weight
# model = resnext152_32x4d(pretrained=True)
"""
return
_resnext
(
'resnext152_32x4d'
,
152
,
32
,
pretrained
,
**
kwargs
)
def
resnext152_64x4d
(
pretrained
=
False
,
**
kwargs
):
"""ResNeXt-152 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_64x4d
# build model
model = resnext152_64x4d()
# build model and load imagenet pretrained weight
# model = resnext152_64x4d(pretrained=True)
"""
return
_resnext
(
'resnext152_64x4d'
,
152
,
64
,
pretrained
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录