reduce_op_handle.cc 7.4 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/reduce_op_handle.h"
C
chengduoZH 已提交
16
#include "paddle/fluid/framework/details/container_cast.h"
C
chengduoZH 已提交
17
#include "paddle/fluid/framework/details/reduce_and_gather.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/variable_visitor.h"
19
#include "paddle/fluid/platform/profiler.h"
C
chengduoZH 已提交
20

C
chengduo 已提交
21 22 23 24
DEFINE_bool(
    cpu_deterministic, false,
    "Whether to make the result of computation deterministic in CPU side.");

C
chengduoZH 已提交
25 26 27 28 29
namespace paddle {
namespace framework {
namespace details {

void ReduceOpHandle::RunImpl() {
Y
Yancey1989 已提交
30 31
  platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second);

C
chengduoZH 已提交
32
  if (places_.size() == 1) return;
C
chengduoZH 已提交
33
  // the input and output may have dummy var.
C
chengduoZH 已提交
34
  auto in_var_handles = DynamicCast<VarHandle>(inputs_);
C
chengduoZH 已提交
35 36 37 38 39

  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
      "The number of output should equal to the number of places.");

C
chengduoZH 已提交
40 41 42 43 44 45 46 47
  VarHandle *out_var_handle;
  {
    auto out_var_handles = DynamicCast<VarHandle>(outputs_);

    PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
                      "The number of output should be one.");
    out_var_handle = out_var_handles.front();
  }
C
chengduoZH 已提交
48

C
chengduoZH 已提交
49
  auto in_0_handle = in_var_handles[0];
C
chengduoZH 已提交
50

C
chengduoZH 已提交
51 52 53 54 55 56 57 58 59 60
  std::vector<const Scope *> var_scopes;
  for (auto *s : local_scopes_) {
    var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get<Scope *>());
  }

  auto pre_in_var =
      var_scopes.at(in_0_handle->scope_idx_)->FindVar(in_0_handle->name_);
  PADDLE_ENFORCE_NOT_NULL(pre_in_var);

  // Wait input done, this Wait is asynchronous operation
C
chengduoZH 已提交
61
  WaitInputVarGenerated();
C
chengduoZH 已提交
62

C
chengduoZH 已提交
63
  // NOTE: The Places of all input tensor must be all on CPU or all on GPU.
C
chengduoZH 已提交
64
  std::vector<platform::Place> in_places;  // used to get dev_ctx
C
chengduoZH 已提交
65
  for (auto *in_handle : in_var_handles) {
C
chengduoZH 已提交
66
    in_places.emplace_back(in_handle->place_);
C
chengduoZH 已提交
67 68 69
    auto in_var =
        var_scopes.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
    PADDLE_ENFORCE_NOT_NULL(in_var);
C
chengduoZH 已提交
70
    VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var);
C
chengduoZH 已提交
71
  }
C
chengduoZH 已提交
72

C
chengduoZH 已提交
73 74 75
  auto out_var =
      var_scopes.at(out_var_handle->scope_idx_)->FindVar(out_var_handle->name_);
  PADDLE_ENFORCE_NOT_NULL(out_var);
C
chengduoZH 已提交
76

C
chengduoZH 已提交
77 78 79 80 81 82 83 84 85 86 87
  // NOTE: The tensors' Place of input and output must be all on GPU or all on
  // CPU.
  auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place();
  platform::Place t_out_p;
  if (platform::is_gpu_place(in_p)) {
    PADDLE_ENFORCE(platform::is_gpu_place(out_var_handle->place_),
                   "Places of input and output must be all on GPU.");
    t_out_p = out_var_handle->place_;
  } else {
    t_out_p = platform::CPUPlace();
  }
C
chengduoZH 已提交
88

C
chengduoZH 已提交
89
  if (pre_in_var->IsType<framework::SelectedRows>()) {
90
    this->RunAndRecordEvent([&] {
91 92 93 94 95
      std::vector<const SelectedRows *> in_selected_rows =
          GetInputValues<SelectedRows>(in_var_handles, var_scopes);
      GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_, t_out_p,
                         out_var->GetMutable<framework::SelectedRows>());
    });
C
chengduoZH 已提交
96
  } else {
C
chengduoZH 已提交
97 98
    std::vector<const LoDTensor *> lod_tensors =
        GetInputValues<LoDTensor>(in_var_handles, var_scopes);
C
chengduo 已提交
99

C
chengduoZH 已提交
100
    if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) {
101
      this->RunAndRecordEvent([&] {
C
chengduo 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        // FIXME(zcd): The order of summing is important,
        // especially when the type of data is float or double.
        // For example, the result of `a+b+c+d` may be different
        // with the result of `c+a+b+d`, so the summing order should be fixed.
        if (!FLAGS_cpu_deterministic) {
          ReduceLoDTensor func(lod_tensors,
                               out_var->GetMutable<framework::LoDTensor>());
          VisitDataType(ToDataType(lod_tensors[0]->type()), func);
        } else {
          // We sum lod_tensors to reduce_sum_trg which is in local_scopes_0
          // here, but it doesn't mean reduce_sum_trg must be in local_scopes_0.
          auto &reduce_sum_trg = *this->local_scopes_[0]
                                      ->FindVar(kLocalExecScopeName)
                                      ->Get<Scope *>()
                                      ->FindVar(out_var_handle->name_)
                                      ->GetMutable<framework::LoDTensor>();
          ReduceLoDTensor func(lod_tensors, &reduce_sum_trg);
          VisitDataType(ToDataType(lod_tensors[0]->type()), func);

          auto trg = out_var->GetMutable<framework::LoDTensor>();
          if (reduce_sum_trg.data<void>() != trg->data<void>()) {
            TensorCopy(reduce_sum_trg, platform::CPUPlace(), trg);
          }
        }
126
      });
C
chengduoZH 已提交
127
    } else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) {
C
chengduoZH 已提交
128
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
129 130 131 132
      auto pre_in = pre_in_var->Get<framework::LoDTensor>();
      VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var);
      VariableVisitor::GetMutableTensor(out_var).mutable_data(
          out_var_handle->place_, pre_in.type());
C
chengduoZH 已提交
133

C
chengduoZH 已提交
134
      auto out_p = out_var_handle->place_;
C
chengduoZH 已提交
135
      int root_id = boost::get<platform::CUDAPlace>(out_p).device;
C
chengduoZH 已提交
136
      std::vector<std::function<void()>> all_reduce_calls;
C
chengduoZH 已提交
137
      for (size_t i = 0; i < var_scopes.size(); ++i) {
C
chengduoZH 已提交
138
        auto &p = in_places[i];
C
chengduoZH 已提交
139
        auto &lod_tensor = *lod_tensors[i];
C
chengduoZH 已提交
140

C
chengduoZH 已提交
141
        int dev_id = boost::get<platform::CUDAPlace>(p).device;
C
chengduoZH 已提交
142
        auto &nccl_ctx = nccl_ctxs_->at(dev_id);
C
chengduoZH 已提交
143 144 145

        void *buffer = const_cast<void *>(lod_tensor.data<void>());
        void *recvbuffer = nullptr;
C
chengduoZH 已提交
146
        if (root_id == dev_id) {
C
chengduoZH 已提交
147 148 149
          recvbuffer =
              out_var->GetMutable<framework::LoDTensor>()->mutable_data(
                  out_var_handle->place_);
C
chengduoZH 已提交
150 151
        }

C
chengduoZH 已提交
152
        int type = platform::ToNCCLDataType(lod_tensor.type());
C
chengduoZH 已提交
153 154 155 156 157 158 159
        size_t numel = static_cast<size_t>(lod_tensor.numel());
        all_reduce_calls.emplace_back(
            [buffer, recvbuffer, type, numel, root_id, &nccl_ctx] {
              PADDLE_ENFORCE(platform::dynload::ncclReduce(
                  buffer, recvbuffer, numel, static_cast<ncclDataType_t>(type),
                  ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream()));
            });
C
chengduoZH 已提交
160 161
      }

C
chengduoZH 已提交
162 163 164 165 166 167
      this->RunAndRecordEvent([&] {
        platform::NCCLGroupGuard guard;
        for (auto &call : all_reduce_calls) {
          call();
        }
      });
C
chengduoZH 已提交
168
#else
C
chengduoZH 已提交
169
      PADDLE_THROW("CUDA is not enabled.");
C
chengduoZH 已提交
170 171
#endif
    } else {
C
chengduoZH 已提交
172
      PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
C
chengduoZH 已提交
173 174 175
    }
  }
}
C
chengduoZH 已提交
176

C
chengduoZH 已提交
177 178 179 180 181 182 183 184 185 186
template <typename T>
std::vector<const T *> ReduceOpHandle::GetInputValues(
    const std::vector<VarHandle *> &in_var_handles,
    const std::vector<const Scope *> &var_scopes) const {
  std::vector<const T *> in_selected_rows;
  for (auto *in_handle : in_var_handles) {
    auto &in_sr = var_scopes.at(in_handle->scope_idx_)
                      ->FindVar(in_handle->name_)
                      ->Get<T>();
    in_selected_rows.emplace_back(&in_sr);
C
chengduoZH 已提交
187
  }
C
chengduoZH 已提交
188
  return in_selected_rows;
C
chengduoZH 已提交
189 190
}

C
chengduoZH 已提交
191 192 193 194
std::string ReduceOpHandle::Name() const { return "reduce"; }
}  // namespace details
}  // namespace framework
}  // namespace paddle