“ac596a3952a3f75cc12f1eefafb14a165a57ff95”上不存在“doc/howto/optimization/cpu_profiling_cn.md”
reduce_op_handle.cc 5.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"

namespace paddle {
namespace framework {
namespace details {

void ReduceOpHandle::RunImpl() {
  // the input and output may have dummy var.
C
chengduoZH 已提交
24 25
  std::vector<VarHandle *> in_var_handles = GetValidVarHandles(inputs_);
  std::vector<VarHandle *> out_var_handles = GetValidVarHandles(outputs_);
C
chengduoZH 已提交
26 27 28 29 30 31 32 33

  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
      "The number of output should equal to the number of places.");
  PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
                    "The number of output should be one.");

  // Wait input done, this Wait is asynchronous operation
C
chengduoZH 已提交
34
  WaitEvents(in_var_handles);
C
chengduoZH 已提交
35 36

  // check in the same place
C
chengduoZH 已提交
37
  auto in_0_handle = in_var_handles[0];
C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  auto pre_place = in_0_handle->place_;

  std::vector<platform::Place> in_places;
  for (auto *in_handle : in_var_handles) {
    auto in_p = in_handle->place_;
    PADDLE_ENFORCE_EQ(in_p.which(), pre_place.which(),
                      "Places must be all on CPU or all on CUDA.");
    in_places.emplace_back(in_p);
  }

  auto out_var = local_scopes_[out_var_handles[0]->scope_idx_]->FindVar(
      out_var_handles[0]->name_);

  auto pre_in_var =
      local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_);

  if (pre_in_var->IsType<framework::SelectedRows>()) {
    auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
    std::vector<const SelectedRows *> in_selected_rows;

    for (auto *in_handle : in_var_handles) {
      auto in_var =
          local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
      auto &in_sr = in_var->Get<framework::SelectedRows>();

      PADDLE_ENFORCE_EQ(in_sr.value().type(), pre_in.value().type(),
                        "The type of input is not consistent.");

      in_selected_rows.emplace_back(&in_sr);
    }
    auto trg = out_var->GetMutable<framework::SelectedRows>();
    GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_,
                       out_var_handles[0]->place_, trg);
  } else {
    auto pre_in = pre_in_var->Get<framework::LoDTensor>();
    std::vector<LoDTensor> lod_tensors;

    // can be refined
    for (auto *in_handle : in_var_handles) {
      auto in_var =
          local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
      auto &in_sr = in_var->Get<framework::LoDTensor>();

      PADDLE_ENFORCE_EQ(in_sr.type(), pre_in.type(),
                        "The type of input is not consistent.");

      lod_tensors.emplace_back(in_sr);
    }

    auto trg = out_var->GetMutable<framework::LoDTensor>();
    trg->Resize(pre_in.dims());
    trg->mutable_data(out_var_handles[0]->place_, pre_in.type());

    if (paddle::platform::is_cpu_place(pre_place)) {
      ReduceLoDTensor func(lod_tensors, trg);
      VisitDataType(ToDataType(lod_tensors[0].type()), func);
    } else if (paddle::platform::is_gpu_place(pre_place)) {
#ifdef PADDLE_WITH_CUDA
      auto out_p = out_var_handles[0]->place_;
      int root = boost::get<platform::CUDAPlace>(out_p).device;

      std::vector<std::function<void()>> all_reduce_calls;
      for (size_t i = 0; i < local_scopes_.size(); ++i) {
        auto &p = in_places[i];
        auto &lod_tensor = lod_tensors[i];
C
chengduoZH 已提交
103

C
chengduoZH 已提交
104
        int dev_id = boost::get<platform::CUDAPlace>(p).device;
C
chengduoZH 已提交
105
        auto &nccl_ctx = nccl_ctxs_->at(dev_id);
C
chengduoZH 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        auto stream = nccl_ctx.stream();
        auto comm = nccl_ctx.comm_;

        void *buffer = const_cast<void *>(lod_tensor.data<void>());
        void *recvbuffer = nullptr;
        if (root == dev_id) {
          recvbuffer = trg->mutable_data(out_var_handles[0]->place_);
        }

        all_reduce_calls.emplace_back([=] {
          PADDLE_ENFORCE(platform::dynload::ncclReduce(
              buffer, recvbuffer, static_cast<size_t>(lod_tensor.numel()),
              platform::ToNCCLDataType(lod_tensor.type()), ncclSum, root, comm,
              stream));
        });
      }

C
chengduoZH 已提交
123 124 125 126 127 128
      this->RunAndRecordEvent([&] {
        platform::NCCLGroupGuard guard;
        for (auto &call : all_reduce_calls) {
          call();
        }
      });
C
chengduoZH 已提交
129 130 131 132
#else
      PADDLE_THROW("CUDA is not support.");
#endif
    } else {
C
chengduoZH 已提交
133
      PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
C
chengduoZH 已提交
134 135 136
    }
  }
}
C
chengduoZH 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

void ReduceOpHandle::WaitEvents(
    const std::vector<VarHandle *> &in_var_handles) {
  if (in_var_handles[0]->generated_op_) {
    for (auto *in : in_var_handles) {
      in_var_handles[0]->generated_op_->Wait(dev_ctxes_[in->place_]);
    }
  }
}

std::vector<VarHandle *> ReduceOpHandle::GetValidVarHandles(
    const std::vector<VarHandleBase *> &inputs) {
  std::vector<VarHandle *> in_var_handles;
  for (auto *in : inputs) {
    auto *in_handle = dynamic_cast<VarHandle *>(in);
    if (in_handle) {
      in_var_handles.push_back(in_handle);
    }
  }
  return in_var_handles;
}
C
chengduoZH 已提交
158 159 160 161
std::string ReduceOpHandle::Name() const { return "reduce"; }
}  // namespace details
}  // namespace framework
}  // namespace paddle