gan_api.md 11.5 KB
Newer Older
Z
zchen0211 已提交
1 2
# Design for GAN

_青葱's avatar
_青葱 已提交
3
GAN (General Adversarial Net [https://arxiv.org/abs/1406.2661]) is an important model for unsupervised learning and widely used in many areas.
Z
zchen0211 已提交
4

Z
gan_api  
zchen0211 已提交
5
It applies several important concepts in machine learning system design, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.
Z
zchen0211 已提交
6

Z
gan_api  
zchen0211 已提交
7
In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN (Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks [https://arxiv.org/abs/1511.06434]) as an example due to its good performance on image generation.
Z
zchen0211 已提交
8

Z
zchen0211 已提交
9
<p align="center">
_青葱's avatar
_青葱 已提交
10
<img src="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/fluid/images/test.dot.png" width = "35%" align="center"/><br/>
Z
zchen0211 已提交
11
Figure 1. The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes. The diamonds indicate the data providers. d\_loss and g\_loss marked in red and green are the two targets we would like to run.
Z
zchen0211 已提交
12 13
</p>

Z
gan  
zchen0211 已提交
14
The operators, layers and functions required/optional to build a GAN demo is summarized in https://github.com/PaddlePaddle/Paddle/issues/4563.
Z
new gan  
zchen0211 已提交
15

Z
zchen0211 已提交
16
<p align="center">
_青葱's avatar
_青葱 已提交
17
<img src="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/fluid/images/dcgan.png" width = "90%" align="center"/><br/>
Z
zchen0211 已提交
18
Figure 2. Photo borrowed from the original DC-GAN paper.
Z
zchen0211 已提交
19 20
</p>

_青葱's avatar
_青葱 已提交
21
## The Conditional-GAN might be a class.
Z
zchen0211 已提交
22 23
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:

Z
zchen0211 已提交
24
- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:
Z
zchen0211 已提交
25

Z
zchen0211 已提交
26
- __init__(...): Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well.
Z
zchen0211 已提交
27

Z
zchen0211 已提交
28
- generator(z, y=None): Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen.
Z
zchen0211 已提交
29 30
Returns a generated image.

Z
zchen0211 已提交
31
- discriminator(image):
_青葱's avatar
_青葱 已提交
32
Given an image, decide if it is from a real source or a fake one.
Z
zchen0211 已提交
33 34
Returns a 0/1 binary label.

Z
zchen0211 已提交
35
- build_model(self):
Z
zchen0211 已提交
36
build the whole GAN model, define training loss for both generator and discrimator.
Z
zchen0211 已提交
37

Z
zchen0211 已提交
38
## Discussion on Engine Functions required to build GAN
Z
gan_api  
zchen0211 已提交
39
- Trace the tensor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly)
Z
zchen0211 已提交
40 41 42 43 44 45 46
- Different optimizers responsible for optimizing different loss.

To be more detailed, we introduce our design of DCGAN as following:

### Class member Function: Initializer
- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth.
- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G.
Z
gan api  
zchen0211 已提交
47
```python
Z
zchen0211 已提交
48 49
class DCGAN(object):
  def __init__(self, y_dim=None):
_青葱's avatar
_青葱 已提交
50

Z
zchen0211 已提交
51 52 53 54 55 56
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
Z
zchen0211 已提交
57
    self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer())
Z
gan api  
zchen0211 已提交
58
    self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
59 60 61 62
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
63
    self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
Z
zchen0211 已提交
64 65

    # define parameters of generators
Z
gan api  
zchen0211 已提交
66 67
    self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
68 69 70 71
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
72 73
    self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```
Z
zchen0211 已提交
74

Z
zchen0211 已提交
75 76 77 78
### Class member Function: Generator
- Given a noisy input z, returns a fake image.
- Concatenation, batch-norm, FC operations required;
- Deconv layer required, which is missing now...
Z
gan api  
zchen0211 已提交
79
```python
Z
gan api  
zchen0211 已提交
80 81
class DCGAN(object):
  def generator(self, z, y = None):
Z
zchen0211 已提交
82 83 84
    # input z: the random noise
    # input y: input data label (optional)
    # output G_im: generated fake images
_青葱's avatar
_青葱 已提交
85

Z
zchen0211 已提交
86
    if not self.y_dim:
Z
gan api  
zchen0211 已提交
87
      z = pd.layer.concat(1, [z, y])
_青葱's avatar
_青葱 已提交
88

Z
gan api  
zchen0211 已提交
89 90 91
    G_h0 = pd.layer.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.layer.batch_norm(G_h0)
    G_h0_relu = pd.layer.relu(G_h0_bn)
_青葱's avatar
_青葱 已提交
92

Z
gan api  
zchen0211 已提交
93 94 95
    G_h1 = pd.layer.deconv(G_h0_relu, self.G_w1, self.G_b1)
    G_h1_bn = pd.layer.batch_norm(G_h1)
    G_h1_relu = pd.layer.relu(G_h1_bn)
_青葱's avatar
_青葱 已提交
96

Z
gan api  
zchen0211 已提交
97 98
    G_h2 = pd.layer.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.layer.tanh(G_im)
Z
zchen0211 已提交
99
    return G_im
Z
gan api  
zchen0211 已提交
100 101
```

Z
zchen0211 已提交
102 103 104
### Class member function: Discriminator
- Given a noisy input z, returns a fake image.
- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required;
Z
gan api  
zchen0211 已提交
105
```python
Z
gan api  
zchen0211 已提交
106 107
class DCGAN(object):
  def discriminator(self, image):
Z
zchen0211 已提交
108 109
    # input image: either generated images or real ones
    # output D_h2: binary logit of the label
Z
zchen0211 已提交
110

Z
gan api  
zchen0211 已提交
111 112 113
    D_h0 = pd.layer.conv2d(image, w=self.D_w0, b=self.D_b0)
    D_h0_bn = pd.layer.batchnorm(h0)
    D_h0_relu = pd.layer.lrelu(h0_bn)
_青葱's avatar
_青葱 已提交
114

Z
gan api  
zchen0211 已提交
115 116 117
    D_h1 = pd.layer.conv2d(D_h0_relu, w=self.D_w1, b=self.D_b1)
    D_h1_bn = pd.layer.batchnorm(D_h1)
    D_h1_relu = pd.layer.lrelu(D_h1_bn)
_青葱's avatar
_青葱 已提交
118

Z
gan api  
zchen0211 已提交
119
    D_h2 = pd.layer.fc(D_h1_relu, w=self.D_w2, b=self.D_b2)
Z
zchen0211 已提交
120
    return D_h2
Z
gan api  
zchen0211 已提交
121
```
Z
zchen0211 已提交
122 123

### Class member function: Build the model
Z
zchen0211 已提交
124 125
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
_青葱's avatar
_青葱 已提交
126
- Define two training losses for discriminator and generator, respectively.
Z
zchen0211 已提交
127
If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this:
Z
gan api  
zchen0211 已提交
128
```python
Z
gan api  
zchen0211 已提交
129 130
class DCGAN(object):
  def build_model(self):
Z
zchen0211 已提交
131 132 133 134 135
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
_青葱's avatar
_青葱 已提交
136

Z
zchen0211 已提交
137 138
    # step 1: generate images by generator, classify real/fake images with discriminator
    if self.y_dim: # if conditional GAN, includes label
Z
zchen0211 已提交
139 140 141 142 143
        self.G = self.generator(self.z, self.y)
        self.D_t = self.discriminator(self.images)
        # generated fake images
        self.sampled = self.sampler(self.z, self.y)
        self.D_f = self.discriminator(self.G)
Z
zchen0211 已提交
144
    else: # original version of GAN
Z
zchen0211 已提交
145 146 147 148 149
        self.G = self.generator(self.z)
        self.D_t = self.discriminator(self.images)
        # generate fake images
        self.sampled = self.sampler(self.z)
        self.D_f = self.discriminator(self.images)
_青葱's avatar
_青葱 已提交
150

Z
zchen0211 已提交
151
    # step 2: define the two losses
Z
zchen0211 已提交
152 153 154
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
_青葱's avatar
_青葱 已提交
155

Z
zchen0211 已提交
156
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
Z
gan api  
zchen0211 已提交
157
```
Z
zchen0211 已提交
158

Z
zchen0211 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
If we do not have dependency engine but blocks, the module building our GAN model will be like this:
```python
class DCGAN(object):
  def build_model(self, default_block):
    # input data in the default block
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    # self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])

    # step 1: generate images by generator, classify real/fake images with discriminator
    with pd.default_block().g_block():
      if self.y_dim: # if conditional GAN, includes label
        self.G = self.generator(self.z, self.y)
        self.D_g = self.discriminator(self.G, self.y)
      else: # original version of GAN
        self.G = self.generator(self.z)
        self.D_g = self.discriminator(self.G, self.y)
      self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_g, np.ones(self.batch_szie))
_青葱's avatar
_青葱 已提交
179

Z
zchen0211 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193
    with pd.default_block().d_block():
      if self.y_dim: # if conditional GAN, includes label
        self.D_t = self.discriminator(self.images, self.y)
        self.D_f = self.discriminator(self.G, self.y)
      else: # original version of GAN
        self.D_t = self.discriminator(self.images)
        self.D_f = self.discriminator(self.G)

      # step 2: define the two losses
      self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
      self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
      self.d_loss = self.d_loss_real + self.d_loss_fake
```
Some small confusion and problems with this design:
Z
gan api  
zchen0211 已提交
194
- D\_g and D\_f are actually the same thing, but has to be written twice; i.e., if we want to run two sub-graphs conceptually, the same codes have to be written twice if they are shared by the graph.
Z
zchen0211 已提交
195 196
- Requires ability to create a block anytime, rather than in if-else or rnn only;

Z
zchen0211 已提交
197
## Main function for the demo:
Z
zchen0211 已提交
198 199 200 201
Generally, the user of GAN just need to the following things:
- Define an object as DCGAN class;
- Build the DCGAN model;
- Specify two optimizers for two different losses with respect to different parameters.
Z
gan api  
zchen0211 已提交
202
```python
Z
zchen0211 已提交
203 204 205 206 207
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

Z
zchen0211 已提交
208
if __name__ == "__main__":
Z
zchen0211 已提交
209
    # dcgan class in the default graph/block
Z
gan api  
zchen0211 已提交
210 211 212 213
    # if we use dependency engine as tensorflow
    # the codes, will be slightly different like:
    # dcgan = DCGAN()
    # dcgan.build_model()
Z
zchen0211 已提交
214 215 216
    with pd.block() as def_block:
      dcgan = DCGAN()
      dcgan.build_model(def_block)
Z
zchen0211 已提交
217 218 219

    # load mnist data
    data_X, data_y = self.load_mnist()
_青葱's avatar
_青葱 已提交
220

Z
zchen0211 已提交
221
    # Two subgraphs required!!!
Z
gan api  
zchen0211 已提交
222 223 224 225 226 227
    with pd.block().d_block():
      d_optim = pd.train.Adam(lr = .001, beta= .1)
      d_step = d_optim.minimize(dcgan.d_loss, dcgan.theta_D)
    with pd.block.g_block():
      g_optim = pd.train.Adam(lr = .001, beta= .1)
      g_step = pd.minimize(dcgan.g_loss, dcgan.theta_G)
Z
zchen0211 已提交
228 229 230

    # executor
    sess = pd.executor()
_青葱's avatar
_青葱 已提交
231

Z
zchen0211 已提交
232 233 234 235 236 237 238 239 240 241
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
_青葱's avatar
_青葱 已提交
242
          sess.run(d_step,
Z
zchen0211 已提交
243 244 245 246
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
Z
gan api  
zchen0211 已提交
247
          sess.run(g_step,
Z
zchen0211 已提交
248
                   feed_dict = {dcgan.z: batch_z})
Z
gan api  
zchen0211 已提交
249
```
Z
zchen0211 已提交
250 251 252 253

# More thinking about dependency engine v.s. block design:
- What if we just want to run an intermediate result? Do we need to run the whole block/graph?
- Should we call eval() to get the fake images in the first stage? And then train the discriminator in the second stage?