Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
4767fb67
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4767fb67
编写于
10月 09, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
gan api modified
上级
4238b9b9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
53 addition
and
14 deletion
+53
-14
doc/design/gan_api.md
doc/design/gan_api.md
+53
-14
未找到文件。
doc/design/gan_api.md
浏览文件 @
4767fb67
...
...
@@ -139,10 +139,10 @@ class DCGAN(object):
-
Define data readers as placeholders to hold the data;
-
Build generator and discriminators;
-
Define two training losses for discriminator and generator, respectively.
If we have execution dependency engine to back-trace all tensors, the module building our GAN model will be like this:
```
python
class
DCGAN
(
object
):
def
build_model
(
self
):
# input data
if
self
.
y_dim
:
self
.
y
=
pd
.
data
(
pd
.
float32
,
[
self
.
batch_size
,
self
.
y_dim
])
self
.
images
=
pd
.
data
(
pd
.
float32
,
[
self
.
batch_size
,
self
.
im_size
,
self
.
im_size
])
...
...
@@ -151,17 +151,17 @@ class DCGAN(object):
# step 1: generate images by generator, classify real/fake images with discriminator
if
self
.
y_dim
:
# if conditional GAN, includes label
self
.
G
=
self
.
generator
(
self
.
z
,
self
.
y
)
self
.
D_t
=
self
.
discriminator
(
self
.
images
)
# generated fake images
self
.
sampled
=
self
.
sampler
(
self
.
z
,
self
.
y
)
self
.
D_f
=
self
.
discriminator
(
self
.
images
)
self
.
G
=
self
.
generator
(
self
.
z
,
self
.
y
)
self
.
D_t
=
self
.
discriminator
(
self
.
images
)
# generated fake images
self
.
sampled
=
self
.
sampler
(
self
.
z
,
self
.
y
)
self
.
D_f
=
self
.
discriminator
(
self
.
G
)
else
:
# original version of GAN
self
.
G
=
self
.
generator
(
self
.
z
)
self
.
D_t
=
self
.
discriminator
(
self
.
images
)
# generate fake images
self
.
sampled
=
self
.
sampler
(
self
.
z
)
self
.
D_f
=
self
.
discriminator
(
self
.
images
)
self
.
G
=
self
.
generator
(
self
.
z
)
self
.
D_t
=
self
.
discriminator
(
self
.
images
)
# generate fake images
self
.
sampled
=
self
.
sampler
(
self
.
z
)
self
.
D_f
=
self
.
discriminator
(
self
.
images
)
# step 2: define the two losses
self
.
d_loss_real
=
pd
.
reduce_mean
(
pd
.
cross_entropy
(
self
.
D_t
,
np
.
ones
(
self
.
batch_size
))
...
...
@@ -171,6 +171,44 @@ class DCGAN(object):
self
.
g_loss
=
pd
.
reduce_mean
(
pd
.
cross_entropy
(
self
.
D_f
,
np
.
ones
(
self
.
batch_szie
))
```
If we do not have dependency engine but blocks, the module building our GAN model will be like this:
```
python
class
DCGAN
(
object
):
def
build_model
(
self
,
default_block
):
# input data in the default block
if
self
.
y_dim
:
self
.
y
=
pd
.
data
(
pd
.
float32
,
[
self
.
batch_size
,
self
.
y_dim
])
self
.
images
=
pd
.
data
(
pd
.
float32
,
[
self
.
batch_size
,
self
.
im_size
,
self
.
im_size
])
# self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
self
.
z
=
pd
.
data
(
tf
.
float32
,
[
None
,
self
.
z_size
])
# step 1: generate images by generator, classify real/fake images with discriminator
with
pd
.
default_block
().
g_block
():
if
self
.
y_dim
:
# if conditional GAN, includes label
self
.
G
=
self
.
generator
(
self
.
z
,
self
.
y
)
self
.
D_g
=
self
.
discriminator
(
self
.
G
,
self
.
y
)
else
:
# original version of GAN
self
.
G
=
self
.
generator
(
self
.
z
)
self
.
D_g
=
self
.
discriminator
(
self
.
G
,
self
.
y
)
self
.
g_loss
=
pd
.
reduce_mean
(
pd
.
cross_entropy
(
self
.
D_g
,
np
.
ones
(
self
.
batch_szie
))
with
pd
.
default_block
().
d_block
():
if
self
.
y_dim
:
# if conditional GAN, includes label
self
.
D_t
=
self
.
discriminator
(
self
.
images
,
self
.
y
)
self
.
D_f
=
self
.
discriminator
(
self
.
G
,
self
.
y
)
else
:
# original version of GAN
self
.
D_t
=
self
.
discriminator
(
self
.
images
)
self
.
D_f
=
self
.
discriminator
(
self
.
G
)
# step 2: define the two losses
self
.
d_loss_real
=
pd
.
reduce_mean
(
pd
.
cross_entropy
(
self
.
D_t
,
np
.
ones
(
self
.
batch_size
))
self
.
d_loss_fake
=
pd
.
reduce_mean
(
pd
.
cross_entropy
(
self
.
D_f
,
np
.
zeros
(
self
.
batch_size
))
self
.
d_loss
=
self
.
d_loss_real
+
self
.
d_loss_fake
```
Some small confusion and problems with this design:
-
D
\_
g and D
\_
f are actually the same thing, but has to be written twice;
-
Requires ability to create a block anytime, rather than in if-else or rnn only;
## Main function for the demo:
Generally, the user of GAN just need to the following things:
-
Define an object as DCGAN class;
...
...
@@ -183,9 +221,10 @@ import numpy as np
import
logging
if
__name__
==
"__main__"
:
# dcgan
dcgan
=
DCGAN
()
dcgan
.
build_model
()
# dcgan class in the default graph/block
with
pd
.
block
()
as
def_block
:
dcgan
=
DCGAN
()
dcgan
.
build_model
(
def_block
)
# load mnist data
data_X
,
data_y
=
self
.
load_mnist
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录