eager_functions.cc 38.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18 19 20 21 22 23 24 25 26 27 28 29
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
30
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
31
#include "paddle/fluid/eager/utils.h"
32
#include "paddle/fluid/framework/convert_utils.h"
33 34
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
35
#include "paddle/fluid/framework/python_headers.h"
36 37
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
38
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
39
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
40
#include "paddle/fluid/platform/enforce.h"
W
wanghuancoder 已提交
41
#include "paddle/fluid/platform/stream/cuda_stream.h"
42 43 44
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
45
#include "paddle/fluid/pybind/tensor_py.h"
46
#include "paddle/phi/api/ext/op_meta_info.h"
47 48 49 50 51 52
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
53 54 55
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"

56 57 58 59 60
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

61
extern PyTypeObject* p_tensor_type;
62 63
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
64 65 66 67 68 69 70 71 72 73 74

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

75
class EagerNumpyAllocation : public phi::Allocation {
76
 public:
77
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
78 79
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
80
            framework::DataTypeSize(dtype) * PyArray_Size_(numpy_data),
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

static PyObject* eager_api_scale(PyObject* self, PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
105 106 107 108 109 110
  paddle::experimental::Tensor ret = egr::scale(
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor,
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1),
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4));
111 112 113 114 115 116 117
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_run_backward(PyObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
118 119
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
120 121
  egr::Backward(tensors, grad_tensors,
                CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2));
122 123 124 125 126
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static PyObject* eager_api_run_partial_grad(PyObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);

  std::vector<paddle::experimental::Tensor> result =
      egr::Grad(tensors, inputs, grad_tensors, retain_graph, create_graph,
                only_inputs, allow_unused, no_grad_vars);
  VLOG(1) << " in eager_api_run_partial_grad, after runing egr::Grad";
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

147 148 149
static PyObject* eager_api_tensor_copy(PyObject* self, PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
150 151 152 153
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
154 155 156
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

157
  dst = src.copy_to(place, blocking);
158 159 160 161 162 163 164 165 166
  egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
      egr::EagerUtils::autograd_meta(&(src))->StopGradient());
  egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
      egr::EagerUtils::autograd_meta(&(src))->Persistable());
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

167 168
static PyObject* eager_api_read_next_tensor_list(PyObject* self, PyObject* args,
                                                 PyObject* kwargs) {
169
  EAGER_TRY
170 171 172 173 174 175
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
  tensor_list.reserve(tensor_base_list.size());
  auto func = [](framework::Tensor& tensor_base) {
    paddle::experimental::Tensor tensor(
176
        egr::Controller::Instance().GenerateUniqueName());
177
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
178 179
    autograd_meta->SetPersistable(false);
    autograd_meta->SetStopGradient(true);
180
    tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
181
    return tensor;
182
  };
183 184
  for (auto& tensor_base : tensor_base_list) {
    tensor_list.emplace_back(func(tensor_base));
185
  }
186
  return ToPyObject(tensor_list);
187 188 189
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
    in_out_map.insert({op_type, res});
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
        grad_outputs_names.size(), inputs_names.size(),
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
          end, std::string::npos,
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
          in_out_map[op_type][0][j] = i;
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
            in_out_map[op_type][1][j] = i;
          }
        }
      } else {
        if (std::find(outputs_names.begin(), outputs_names.end(),
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
              in_out_map[op_type][2][j] = i;
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
              in_out_map[op_type][3][j] = i;
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
      auto end = std::find(attrs_names.begin(), attrs_names.end(),
                           grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end, attrs_names.end(),
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
          in_out_map[op_type][4][j] = i;
        }
      }
    }
  }
}

static std::vector<paddle::any> CastAttrsToTragetType(
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
  PADDLE_ENFORCE_EQ(src.size(), attrs_names.size(),
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
                        attrs_names.size(), src.size()));
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
    std::string type_name =
        attrs_names[i].substr(end + 2, attrs_names.size() - end - 2);
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
            i, src[i].type().name()));
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
            i, src[i].type().name()));
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
  VLOG(7) << "Get things for python for Custom Op: " << op_type
          << ", trace_backward is: " << trace_backward;
  auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
  PADDLE_ENFORCE_NE(meta_info_map.find(op_type), meta_info_map.end(),
                    paddle::platform::errors::NotFound(
                        "Can't find %s in Eager OpMetaInfoMap which should be "
                        "created by LoadOpMetaInfoAndRegisterOp, please make "
                        "sure you registered your op first and try again. ",
                        op_type));
  VLOG(7) << "Run Kernel of Custom Op: " << op_type;
  std::vector<paddle::any> res_attrs = CastAttrsToTragetType(
      ctx.Attrs(), paddle::framework::OpMetaInfoHelper::GetAttrs(
                       meta_info_map.at(op_type)[0]));
  ctx.EmplaceBackAttrs(res_attrs);
  const auto& vec_map = meta_info_map.at(op_type);
  (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

  VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
  std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
  std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
  VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
  ins_auto_grad_metas.resize(ctx.InputRange().size());
  VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
  outs_auto_grad_metas.resize(ctx.OutputRange().size());
373

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  for (size_t i = 0; i < ctx.InputRange().size(); i++) {
    ins_auto_grad_metas[i] =
        egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
            ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
  }
  for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
    outs_auto_grad_metas[i] =
        egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
            ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
  }
  bool require_any_grad = false;
  for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
    require_any_grad =
        require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                trace_backward, &(ins_auto_grad_metas[i]));
  }
  if (require_any_grad) {
    VLOG(6) << " Construct Grad for Custom Op: " << op_type;
    ConstructFwdAndBwdMap(vec_map, op_type);
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
      egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
    }
    auto grad_node = std::make_shared<egr::RunCustomOpNode>(
        outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
    auto slot_map =
        egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
    // Prepare Grad outputs
    size_t no_grad_cnt = 0;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
403 404 405 406
      const std::vector<paddle::experimental::Tensor>& in_tensors =
          ctx.InputsBetween(ctx.InputRangeAt(i).first,
                            ctx.InputRangeAt(i).second);

407
      if (slot_map[0].find(i) != slot_map[0].end()) {
408
        grad_node->SetGradOutMeta(in_tensors, slot_map[0][i]);
409
      } else {
410
        grad_node->SetGradOutMeta(in_tensors,
411 412 413 414 415 416
                                  ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        no_grad_cnt++;
      }
    }
    // Prepare Grad inputs with grad of fwd outputs
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
417 418 419 420
      const std::vector<paddle::experimental::Tensor>& out_tensors =
          ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first,
                              ctx.OutputRangeAt(i).second);

421 422
      egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
      egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
423 424
      grad_node->SetGradInMeta(out_tensors, i);
      egr::EagerUtils::CheckAndRetainGrad(out_tensors);
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    }

    // Prepare Grad inputs with fwd outputs
    for (auto it = slot_map[2].begin(); it != slot_map[2].end(); it++) {
      VLOG(7) << "Prepare fwd_outs: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_outs[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                  ctx.OutputRangeAt(it->first).second));
    }

    // Prepare Grad inputs with fwd inputs
    for (auto it = slot_map[3].begin(); it != slot_map[3].end(); it++) {
      VLOG(7) << "Prepare fwd_ins: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_ins[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                ctx.InputRangeAt(it->first).second));
    }

    auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
        meta_info_map.at(op_type)[1]);
    std::vector<paddle::any> attrs(attrs_names.size());
    // Prepare attrs for Grad node
    for (auto it = slot_map[4].begin(); it != slot_map[4].end(); it++) {
      VLOG(7) << "Prepare fwd attrs: " << it->first
              << " to grad_attrs: " << it->second;
      attrs[it->second] = res_attrs[it->first];
    }
    grad_node->SetAttrs(attrs);
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static PyObject* eager_api_sparse_coo_tensor(PyObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero indices must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));
  auto dense_indices =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  // TODO(zhangkaihuo): After create SparseTensor, call coalesced() to sort and
  // merge duplicate indices
  std::shared_ptr<phi::SparseCooTensor> coo_tensor =
      std::make_shared<phi::SparseCooTensor>(*dense_indices, *dense_elements,
                                             phi::make_ddim(dense_shape));
  paddle::experimental::Tensor tensor;
  tensor.set_impl(coo_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_sparse_csr_tensor(PyObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the compressed non-zero rows must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero cols must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));

  auto dense_crows =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
  auto dense_cols =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
      std::make_shared<phi::SparseCsrTensor>(*dense_crows, *dense_cols,
                                             *dense_elements,
                                             phi::make_ddim(dense_shape));
  paddle::experimental::Tensor tensor;
  tensor.set_impl(csr_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559
#if defined(PADDLE_WITH_CUDA)
static PyObject* eager_api_async_read(PyObject* self, PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
  PADDLE_ENFORCE_EQ(
      src.is_gpu_pinned(), true,
      platform::errors::InvalidArgument("Required `src` device should be "
                                        "CUDAPinnedPlace, but received %d.",
C
Chen Weihang 已提交
560
                                        src.place()));
W
wanghuancoder 已提交
561 562 563 564
  PADDLE_ENFORCE_EQ(
      dst.is_gpu(), true,
      platform::errors::InvalidArgument(
          "Required `dst` device should be CUDAPlace, but received %d.",
C
Chen Weihang 已提交
565
          dst.place()));
W
wanghuancoder 已提交
566 567 568 569
  PADDLE_ENFORCE_EQ(
      index.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `index` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
570
          index.place()));
W
wanghuancoder 已提交
571 572 573 574
  PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(), true,
                    platform::errors::InvalidArgument(
                        "Required `buffer` device should be CUDAPinnedPlace, "
                        "but received %d.",
C
Chen Weihang 已提交
575
                        buffer.place()));
W
wanghuancoder 已提交
576 577 578 579
  PADDLE_ENFORCE_EQ(
      offset.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `offset` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
580
          offset.place()));
W
wanghuancoder 已提交
581 582 583 584
  PADDLE_ENFORCE_EQ(
      count.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d.",
C
Chen Weihang 已提交
585
          count.place()));
W
wanghuancoder 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& index_tensor = index;
  auto* buffer_tensor = &buffer;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

  PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(),
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have same tensor shape, "
                        "except for the first dimension."));
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(), buffer_tensor->dims().size(),
                    platform::errors::InvalidArgument(
                        "`src` and `buffer` should have same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i], dst_tensor->dims()[i],
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(
        src_tensor.dims()[i], buffer_tensor->dims()[i],
        platform::errors::InvalidArgument(
            "`src` and `buffer` should have the same tensor shape, "
            "except for the first dimension."));
  }
  PADDLE_ENFORCE_EQ(index_tensor.dims().size(), 1,
                    platform::errors::InvalidArgument(
                        "`index` tensor should be one-dimensional."));

  auto stream =
      paddle::platform::stream::get_current_stream(deviceId)->raw_stream();

  int64_t numel = 0;  // total copy length
  int64_t copy_flag = offset_tensor.dims()[0];
  int64_t size = src_tensor.numel() / src_tensor.dims()[0];

  if (copy_flag != 0) {
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
    PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
    auto* offset_data = offset_tensor.data<int64_t>();
    auto* count_data = count_tensor.data<int64_t>();
    for (int64_t i = 0; i < count_tensor.numel(); i++) {
      numel += count_data[i];
    }
    PADDLE_ENFORCE_LE(
        numel + index_tensor.numel(), buffer_tensor->dims()[0],
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
    PADDLE_ENFORCE_LE(
        numel + index_tensor.numel(), dst_tensor->dims()[0],
        platform::errors::InvalidArgument("Target tensor size is too small."));

    int64_t src_offset, dst_offset = 0, c;
    auto* src_data = src_tensor.data<float>();
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
      src_offset = offset_data[i], c = count_data[i];
      PADDLE_ENFORCE_LE(
          src_offset + c, src_tensor.dims()[0],
          platform::errors::InvalidArgument("Invalid offset or count index."));
      PADDLE_ENFORCE_LE(
          dst_offset + c, dst_tensor->dims()[0],
          platform::errors::InvalidArgument("Invalid offset or count index."));
      cudaMemcpyAsync(dst_data + (dst_offset * size),
                      src_data + (src_offset * size), c * size * sizeof(float),
                      cudaMemcpyHostToDevice, stream);
      dst_offset += c;
    }
  } else {
    PADDLE_ENFORCE_LE(
        index_tensor.numel(), buffer_tensor->dims()[0],
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
  }

  // Select the index data to the buffer
  auto index_select = [](const paddle::experimental::Tensor& src_tensor,
                         const paddle::experimental::Tensor& index_tensor,
                         paddle::experimental::Tensor* buffer_tensor) {
    auto* src_data = src_tensor.data<float>();
    auto* index_data = index_tensor.data<int64_t>();
    auto* buffer_data = buffer_tensor->data<float>();
    const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
    const int& copy_bytes = slice_size * sizeof(float);
    int64_t c = 0;
    for (int64_t i = 0; i < index_tensor.numel(); i++) {
      std::memcpy(buffer_data + c * slice_size,
                  src_data + index_data[i] * slice_size, copy_bytes);
      c += 1;
    }
  };
  index_select(src_tensor, index_tensor, buffer_tensor);

  // Copy the data to device memory
  cudaMemcpyAsync(dst_data + (numel * size), buffer_tensor->data<float>(),
                  index_tensor.numel() * size * sizeof(float),
                  cudaMemcpyHostToDevice, stream);
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_async_write(PyObject* self, PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  PADDLE_ENFORCE_EQ(
      src.is_gpu(), true,
      platform::errors::InvalidArgument(
          "Required `src` device should be CUDAPlace, but received %d. ",
C
Chen Weihang 已提交
707
          src.place()));
W
wanghuancoder 已提交
708 709 710 711
  PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(), true,
                    platform::errors::InvalidArgument(
                        "Required `dst` device should be CUDAPinnedPlace, "
                        "but received %d. ",
C
Chen Weihang 已提交
712
                        dst.place()));
W
wanghuancoder 已提交
713 714 715 716
  PADDLE_ENFORCE_EQ(
      offset.is_cpu(), true,
      platform::errors::InvalidArgument("Required `offset` device should "
                                        "be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
717
                                        offset.place()));
W
wanghuancoder 已提交
718 719 720 721
  PADDLE_ENFORCE_EQ(
      count.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d. ",
C
Chen Weihang 已提交
722
          count.place()));
W
wanghuancoder 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

  // TODO(daisiming): In future, add index as arguments following
  // async_read.
  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

  PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                    platform::errors::InvalidArgument(
                        "`offset` tensor should be one-dimensional."));
  PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                    platform::errors::InvalidArgument(
                        "`count` tensor should be one-dimensional."));
  PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                    platform::errors::InvalidArgument(
                        "`offset` and `count` tensor size dismatch."));
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(),
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have the same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i], dst_tensor->dims()[i],
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
  }
751

W
wanghuancoder 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
  auto stream =
      paddle::platform::stream::get_current_stream(deviceId)->raw_stream();

  int64_t size = src_tensor.numel() / src_tensor.dims()[0];
  auto* src_data = src_tensor.data<float>();
  auto* dst_data = dst_tensor->data<float>();
  const int64_t* offset_data = offset_tensor.data<int64_t>();
  const int64_t* count_data = count_tensor.data<int64_t>();
  int64_t src_offset = 0, dst_offset, c;
  for (int64_t i = 0; i < offset_tensor.numel(); i++) {
    dst_offset = offset_data[i], c = count_data[i];
    PADDLE_ENFORCE_LE(
        src_offset + c, src_tensor.dims()[0],
        platform::errors::InvalidArgument("Invalid offset or count index"));
    PADDLE_ENFORCE_LE(
        dst_offset + c, dst_tensor->dims()[0],
        platform::errors::InvalidArgument("Invalid offset or count index"));
    cudaMemcpyAsync(dst_data + (dst_offset * size),
                    src_data + (src_offset * size), c * size * sizeof(float),
                    cudaMemcpyDeviceToHost, stream);
    src_offset += c;
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824

static PyObject* eager_api_to_uva_tensor(PyObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
  auto new_tensor = std::shared_ptr<paddle::experimental::Tensor>(
      new paddle::experimental::Tensor(
          egr::Controller::Instance().GenerateUniqueName()));
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

  int device_id = 0;
  PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
  if (Py_device_id) {
    device_id = CastPyArg2AttrLong(Py_device_id, 1);
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
    SetUVATensorFromPyArray<paddle::platform::float16>(new_tensor, array,
                                                       device_id);
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }

  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
825
#endif
826

827
PyMethodDef variable_functions[] = {
828
    // TODO(jiabin): Remove scale when we have final state tests
829 830 831 832
    {"scale", (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"run_backward", (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS, NULL},
833 834 835
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
     METH_VARARGS | METH_KEYWORDS, NULL},
836 837
    {"_run_custom_op", (PyCFunction)(void (*)(void))eager_api_run_costum_op,
     METH_VARARGS | METH_KEYWORDS, NULL},
838 839
    {"tensor_copy", (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS, NULL},
840 841
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
842
     METH_VARARGS | METH_KEYWORDS, NULL},
843 844 845 846 847 848 849
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
850
/**sparse functions**/
W
wanghuancoder 已提交
851 852 853 854 855
#if defined(PADDLE_WITH_CUDA)
    {"async_read", (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"async_write", (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS, NULL},
856 857
    {"to_uva_tensor", (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
858
#endif
859 860 861 862 863 864 865 866 867 868 869 870
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle