eager_functions.cc 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
24
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
25
#include "paddle/fluid/eager/utils.h"
26
#include "paddle/fluid/framework/convert_utils.h"
27 28
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
29 30
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
31
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
32 33 34 35
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
36
#include "paddle/phi/api/ext/op_meta_info.h"
37 38 39 40 41 42
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
43 44 45 46 47
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

48
extern PyTypeObject* p_tensor_type;
49 50
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
51 52 53 54 55 56 57 58 59 60 61

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

62
class EagerNumpyAllocation : public phi::Allocation {
63
 public:
64
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
65 66
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
67
            framework::DataTypeSize(dtype) * PyArray_Size_(numpy_data),
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

static PyObject* eager_api_set_expected_place(PyObject* self, PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  egr::Controller::Instance().SetExpectedPlace(place);

  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
99 100 101 102 103 104 105
static PyObject* eager_api_get_expected_place(PyObject* self, PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  return ToPyObject(egr::Controller::Instance().GetExpectedPlace());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

106 107 108 109
static PyObject* eager_api_scale(PyObject* self, PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
110 111 112 113 114 115
  paddle::experimental::Tensor ret = egr::scale(
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor,
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1),
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4));
116 117 118 119 120 121 122
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_run_backward(PyObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
123 124 125 126
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  egr::RunBackward(tensors, grad_tensors,
                   CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2));
127 128 129 130 131
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

132 133 134
static PyObject* eager_api_tensor_copy(PyObject* self, PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
135 136 137 138
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
139 140 141
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

142
  dst = src.copy_to(phi::TransToPhiBackend(place), blocking);
143 144 145 146 147 148 149 150 151
  egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
      egr::EagerUtils::autograd_meta(&(src))->StopGradient());
  egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
      egr::EagerUtils::autograd_meta(&(src))->Persistable());
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

152 153
static PyObject* eager_api_read_next_tensor_list(PyObject* self, PyObject* args,
                                                 PyObject* kwargs) {
154
  EAGER_TRY
155 156 157 158 159 160
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
  tensor_list.reserve(tensor_base_list.size());
  auto func = [](framework::Tensor& tensor_base) {
    paddle::experimental::Tensor tensor(
161
        egr::Controller::Instance().GenerateUniqueName());
162
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
163 164
    autograd_meta->SetPersistable(false);
    autograd_meta->SetStopGradient(true);
165
    tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
166
    return tensor;
167
  };
168 169
  for (auto& tensor_base : tensor_base_list) {
    tensor_list.emplace_back(func(tensor_base));
170
  }
171
  return ToPyObject(tensor_list);
172 173 174
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
    in_out_map.insert({op_type, res});
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
        grad_outputs_names.size(), inputs_names.size(),
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
          end, std::string::npos,
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
          in_out_map[op_type][0][j] = i;
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
            in_out_map[op_type][1][j] = i;
          }
        }
      } else {
        if (std::find(outputs_names.begin(), outputs_names.end(),
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
              in_out_map[op_type][2][j] = i;
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
              in_out_map[op_type][3][j] = i;
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
      auto end = std::find(attrs_names.begin(), attrs_names.end(),
                           grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end, attrs_names.end(),
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
          in_out_map[op_type][4][j] = i;
        }
      }
    }
  }
}

static std::vector<paddle::any> CastAttrsToTragetType(
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
  PADDLE_ENFORCE_EQ(src.size(), attrs_names.size(),
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
                        attrs_names.size(), src.size()));
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
    std::string type_name =
        attrs_names[i].substr(end + 2, attrs_names.size() - end - 2);
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
            i, src[i].type().name()));
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
            i, src[i].type().name()));
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
  VLOG(7) << "Get things for python for Custom Op: " << op_type
          << ", trace_backward is: " << trace_backward;
  auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
  PADDLE_ENFORCE_NE(meta_info_map.find(op_type), meta_info_map.end(),
                    paddle::platform::errors::NotFound(
                        "Can't find %s in Eager OpMetaInfoMap which should be "
                        "created by LoadOpMetaInfoAndRegisterOp, please make "
                        "sure you registered your op first and try again. ",
                        op_type));
  VLOG(7) << "Run Kernel of Custom Op: " << op_type;
  std::vector<paddle::any> res_attrs = CastAttrsToTragetType(
      ctx.Attrs(), paddle::framework::OpMetaInfoHelper::GetAttrs(
                       meta_info_map.at(op_type)[0]));
  ctx.EmplaceBackAttrs(res_attrs);
  const auto& vec_map = meta_info_map.at(op_type);
  (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

  VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
  std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
  std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
  VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
  ins_auto_grad_metas.resize(ctx.InputRange().size());
  VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
  outs_auto_grad_metas.resize(ctx.OutputRange().size());
  for (size_t i = 0; i < ctx.InputRange().size(); i++) {
    ins_auto_grad_metas[i] =
        egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
            ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
  }
  for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
    outs_auto_grad_metas[i] =
        egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
            ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
  }
  bool require_any_grad = false;
  for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
    require_any_grad =
        require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                trace_backward, &(ins_auto_grad_metas[i]));
  }
  if (require_any_grad) {
    VLOG(6) << " Construct Grad for Custom Op: " << op_type;
    ConstructFwdAndBwdMap(vec_map, op_type);
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
      egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
    }
    auto grad_node = std::make_shared<egr::RunCustomOpNode>(
        outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
    auto slot_map =
        egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
    // Prepare Grad outputs
    size_t no_grad_cnt = 0;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
      if (slot_map[0].find(i) != slot_map[0].end()) {
        grad_node->SetGradOutMeta(&ins_auto_grad_metas[i], slot_map[0][i]);
        grad_node->AddEdges(&ins_auto_grad_metas[i], slot_map[0][i]);
      } else {
        grad_node->SetGradOutMeta(&ins_auto_grad_metas[i],
                                  ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        grad_node->AddEdges(&ins_auto_grad_metas[i],
                            ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        no_grad_cnt++;
      }
    }
    // Prepare Grad inputs with grad of fwd outputs
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
      egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
      egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
      grad_node->SetGradInMeta(&(outs_auto_grad_metas[i]), i);
      egr::EagerUtils::CheckAndRetainGrad(ctx.OutputsBetweeen(
          ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
    }

    // Prepare Grad inputs with fwd outputs
    for (auto it = slot_map[2].begin(); it != slot_map[2].end(); it++) {
      VLOG(7) << "Prepare fwd_outs: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_outs[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                  ctx.OutputRangeAt(it->first).second));
    }

    // Prepare Grad inputs with fwd inputs
    for (auto it = slot_map[3].begin(); it != slot_map[3].end(); it++) {
      VLOG(7) << "Prepare fwd_ins: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_ins[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                ctx.InputRangeAt(it->first).second));
    }

    auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
        meta_info_map.at(op_type)[1]);
    std::vector<paddle::any> attrs(attrs_names.size());
    // Prepare attrs for Grad node
    for (auto it = slot_map[4].begin(); it != slot_map[4].end(); it++) {
      VLOG(7) << "Prepare fwd attrs: " << it->first
              << " to grad_attrs: " << it->second;
      attrs[it->second] = res_attrs[it->first];
    }
    grad_node->SetAttrs(attrs);
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

443
PyMethodDef variable_functions[] = {
444
    // TODO(jiabin): Remove scale when we have final state tests
445 446 447 448 449
    {"scale", (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"_set_expected_place",
     (PyCFunction)(void (*)(void))eager_api_set_expected_place,
     METH_VARARGS | METH_KEYWORDS, NULL},
J
Jiabin Yang 已提交
450 451 452
    {"_get_expected_place",
     (PyCFunction)(void (*)(void))eager_api_get_expected_place,
     METH_VARARGS | METH_KEYWORDS, NULL},
453 454
    {"run_backward", (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS, NULL},
455 456
    {"_run_custom_op", (PyCFunction)(void (*)(void))eager_api_run_costum_op,
     METH_VARARGS | METH_KEYWORDS, NULL},
457 458
    {"tensor_copy", (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS, NULL},
459 460
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
461
     METH_VARARGS | METH_KEYWORDS, NULL},
462 463 464 465 466 467 468 469 470 471 472 473
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle