recv_op.cc 7.6 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14 15 16 17 18 19 20 21 22 23 24 25

#include <stdint.h>
#include <sys/stat.h>
#include <ostream>
#include <thread>

#include <unistd.h>

#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
T
typhoonzero 已提交
26
#include "paddle/framework/proto_desc.h"
G
gongweibao 已提交
27 28
#include "paddle/operators/detail/grpc_server.h"
#include "paddle/operators/detail/sendrecvop_utils.h"
武毅 已提交
29 30
#include "paddle/operators/detail/simple_block_queue.h"

T
typhoonzero 已提交
31 32
#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV"

武毅 已提交
33 34 35
namespace paddle {
namespace operators {

G
gongweibao 已提交
36 37 38 39 40
void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) {
  service->RunSyncUpdate();
  VLOG(4) << "RunServer thread end";
}

Y
Yancey 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54
static void CreateTensorFromMessageType(framework::Variable *var,
                                        sendrecv::VarType var_type) {
  if (var_type == sendrecv::VarType::LOD_TENSOR) {
    var->GetMutable<framework::LoDTensor>();
  } else if (var_type == sendrecv::VarType::SELECTED_ROWS) {
    var->GetMutable<framework::SelectedRows>();
  } else {
    PADDLE_THROW(
        "VraibleMessage type %d is not in "
        "[LoDTensor, SelectedRows]",
        var_type);
  }
}

武毅 已提交
55 56 57 58 59 60 61 62
class RecvOp : public framework::OperatorBase {
 public:
  RecvOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {
    if (!rpc_service_) {
      std::string endpoint = Attr<std::string>("endpoint");
G
gongweibao 已提交
63 64
      rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
      server_thread_.reset(new std::thread(RunServer, rpc_service_));
武毅 已提交
65 66 67
    }
  }

T
typhoonzero 已提交
68
  void Stop() override {
Y
Yancey 已提交
69
    detail::MessageWithName term_msg;
T
typhoonzero 已提交
70 71
    term_msg.first = LISTEN_TERMINATE_MESSAGE;
    rpc_service_->Push(term_msg);
G
gongweibao 已提交
72
    rpc_service_->ShutDown();
武毅 已提交
73 74 75
    server_thread_->join();
  }

T
done  
typhoonzero 已提交
76
  std::string GetGradVarNameForTrainer(const std::string &varname) const {
T
typhoonzero 已提交
77
    if (grads_counter_.find(varname) == grads_counter_.end()) {
T
done  
typhoonzero 已提交
78 79 80 81 82 83 84 85
      grads_counter_[varname] = 0;
    }
    char ret[256];
    snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(),
             grads_counter_[varname]++);
    return std::string(ret);
  }

武毅 已提交
86
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
87
           const platform::Place &dev_place) const override {
T
typhoonzero 已提交
88
    // FIXME(typhoonzero): no new scopes for every run.
武毅 已提交
89
    framework::Scope &recv_scope = scope.NewScope();
Y
Yancey1989 已提交
90 91 92
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);

Y
Yancey1989 已提交
93
    // FIXME(Yancey1989): initialize rpc server with laze mode.
T
typhoonzero 已提交
94
    rpc_service_->SetScope(&recv_scope);
Y
Yancey1989 已提交
95
    rpc_service_->SetDevCtx(&dev_ctx);
T
typhoonzero 已提交
96 97
    auto param_list = Attr<std::vector<std::string>>("ParamList");
    auto grad_list = Attr<std::vector<std::string>>("GradList");
T
done  
typhoonzero 已提交
98
    auto trainer_count = Attr<int>("Trainers");
T
typhoonzero 已提交
99
    size_t param_count = param_list.size();
G
gongweibao 已提交
100

T
typhoonzero 已提交
101
    rpc_service_->Reset();
T
typhoonzero 已提交
102
    // TODO(typhoonzero): change this to a while_op for every cluster-batch.
T
typhoonzero 已提交
103
    bool exit_flag = false;
G
gongweibao 已提交
104 105
    VLOG(4) << "param_count:" << param_count
            << " trainer_count:" << trainer_count;
T
typhoonzero 已提交
106
    while (!exit_flag) {
G
gongweibao 已提交
107
      // TODO(gognwb): simply this loop.
T
done  
typhoonzero 已提交
108 109 110
      // Get from multiple trainers, we don't care about order in which
      // the gradient arrives, just add suffix 0~n then average the gradient.
      for (size_t i = 0; i < param_count * trainer_count; ++i) {
T
typhoonzero 已提交
111
        // blocking get one var from client.
Y
Yancey 已提交
112
        const detail::MessageWithName &v = rpc_service_->Get();
T
typhoonzero 已提交
113
        auto grad_var_name = v.first;
T
typhoonzero 已提交
114
        if (grad_var_name == LISTEN_TERMINATE_MESSAGE) {
G
gongweibao 已提交
115
          VLOG(4) << "received LISTEN_TERMINATE_MESSAGE and RunOp.Run() exit";
T
typhoonzero 已提交
116 117 118
          exit_flag = true;
          break;
        }
T
typhoonzero 已提交
119 120 121 122
        auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name);
        std::string param_var_name;
        if (it != grad_list.end()) {
          param_var_name = param_list[it - grad_list.begin()];
T
typhoonzero 已提交
123
        } else {
G
gongweibao 已提交
124 125
          LOG(ERROR) << "grad have no paired param found!\"" << grad_var_name
                     << "\"";
T
typhoonzero 已提交
126
        }
T
typhoonzero 已提交
127 128
        VLOG(3) << "recved grad: " << grad_var_name
                << " updating param: " << param_var_name;
G
gongweibao 已提交
129

T
typhoonzero 已提交
130 131
        auto *merged_grad = recv_scope.FindVar(grad_var_name);
        if (merged_grad == nullptr) {
Y
Yancey 已提交
132
          auto *ptr = recv_scope.Var(grad_var_name);
Y
Yancey 已提交
133
          CreateTensorFromMessageType(ptr, v.second.type());
Y
Yancey 已提交
134
          VLOG(3) << "Create Variable " << grad_var_name
Y
Yancey 已提交
135 136
                  << " on recv scope, which pointer is " << ptr << " type is "
                  << v.second.type();
T
typhoonzero 已提交
137 138
        }

T
done  
typhoonzero 已提交
139
        if (trainer_count > 1) {
T
typhoonzero 已提交
140
          grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
T
done  
typhoonzero 已提交
141 142
        }

T
typhoonzero 已提交
143
        auto *var = recv_scope.Var(grad_var_name);
Y
Yancey 已提交
144
        detail::DeserializeFromMessage(v.second, dev_ctx, var);
T
typhoonzero 已提交
145
      }
G
gongweibao 已提交
146

T
typhoonzero 已提交
147 148
      if (exit_flag) {
        break;
T
typhoonzero 已提交
149
      }
G
gongweibao 已提交
150

T
typhoonzero 已提交
151
      rpc_service_->Reset();
武毅 已提交
152

T
typhoonzero 已提交
153
      std::string program_str = Attr<std::string>("OptimizeProgram");
T
typhoonzero 已提交
154
      framework::proto::ProgramDesc program_desc;
T
typhoonzero 已提交
155
      program_desc.ParseFromString(program_str);
T
typhoonzero 已提交
156
      framework::ProgramDesc program(program_desc);
T
typhoonzero 已提交
157
      framework::Executor executor(dev_place);
T
typhoonzero 已提交
158 159 160 161 162 163 164
      // Run sub graph to get optimized tensor
      try {
        executor.Run(program, &recv_scope, 0, /*global_block*/
                     false /*create_local_scope*/, false /*create_vars*/);
      } catch (std::exception &e) {
        LOG(ERROR) << "run sub program error " << e.what();
      }
G
gongweibao 已提交
165

T
typhoonzero 已提交
166
      rpc_service_->Done();
T
typhoonzero 已提交
167
      grads_counter_.clear();
T
typhoonzero 已提交
168
    }  // while(true)
武毅 已提交
169 170 171
  }

 protected:
G
gongweibao 已提交
172
  std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
武毅 已提交
173
  std::shared_ptr<std::thread> server_thread_;
T
done  
typhoonzero 已提交
174
  mutable std::unordered_map<std::string, int> grads_counter_;
武毅 已提交
175 176 177 178
};

class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
179
  RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
武毅 已提交
180
      : OpProtoAndCheckerMaker(proto, op_checker) {
T
typhoonzero 已提交
181
    AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
武毅 已提交
182 183 184 185 186 187 188 189 190 191
    AddComment(R"DOC(
Recv operator

This operator will recv tensor from send_op
)DOC");
    AddAttr<std::string>("endpoint",
                         "(string, default 127.0.0.1:6164)"
                         "IP address to listen on.")
        .SetDefault("127.0.0.1:6164")
        .AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
T
typhoonzero 已提交
192 193
    AddAttr<std::string>("OptimizeProgram", "type string",
                         "Serialized ProgramDesc string for recv to run.");
T
typhoonzero 已提交
194 195
    AddAttr<std::vector<std::string>>(
        "ParamList", "type list of string",
Y
Yancey1989 已提交
196 197
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
typhoonzero 已提交
198 199
    AddAttr<std::vector<std::string>>(
        "GradList", "type list of string",
Y
Yancey1989 已提交
200 201
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
done  
typhoonzero 已提交
202 203 204
    AddAttr<int>("Trainers", "type int",
                 "Number of trainers in the current cluster job")
        .SetDefault(1);
武毅 已提交
205 206 207 208 209 210 211 212 213
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker);