recv_op.cc 6.7 KB
Newer Older
武毅 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <stdint.h>
#include <sys/stat.h>
#include <ostream>
#include <thread>

#include <unistd.h>

#include "paddle/framework/data_type.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/detail/send_recv_impl.h"
#include "paddle/operators/detail/simple_block_queue.h"

namespace paddle {
namespace operators {

void RunServer(Server **rpc_server,
               std::shared_ptr<detail::SendRecvServerImpl> service,
               const std::string &server_address) {
  ServerBuilder builder;
  builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
  builder.RegisterService(service.get());
  std::unique_ptr<Server> server(builder.BuildAndStart());
  *rpc_server = server.get();
  LOG(INFO) << "Server listening on " << server_address << std::endl;
  server->Wait();
}

class RecvOp : public framework::OperatorBase {
 public:
  RecvOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {
    if (!rpc_service_) {
      rpc_service_.reset(new detail::SendRecvServerImpl());
      std::string endpoint = Attr<std::string>("endpoint");
      server_thread_.reset(
          new std::thread(RunServer, &rpc_server_, rpc_service_, endpoint));
    }
  }

  virtual ~RecvOp() {
    rpc_server_->Shutdown();
    server_thread_->join();
  }

T
done  
typhoonzero 已提交
64
  std::string GetGradVarNameForTrainer(const std::string &varname) const {
T
typhoonzero 已提交
65
    if (grads_counter_.find(varname) == grads_counter_.end()) {
T
done  
typhoonzero 已提交
66 67 68 69 70 71 72 73
      grads_counter_[varname] = 0;
    }
    char ret[256];
    snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(),
             grads_counter_[varname]++);
    return std::string(ret);
  }

武毅 已提交
74 75
  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
T
typhoonzero 已提交
76
    // FIXME(typhoonzero): no new scopes for every run.
武毅 已提交
77
    framework::Scope &recv_scope = scope.NewScope();
T
typhoonzero 已提交
78
    rpc_service_->SetScope(&recv_scope);
T
typhoonzero 已提交
79 80
    auto param_list = Attr<std::vector<std::string>>("ParamList");
    auto grad_list = Attr<std::vector<std::string>>("GradList");
T
done  
typhoonzero 已提交
81
    auto trainer_count = Attr<int>("Trainers");
T
typhoonzero 已提交
82
    size_t param_count = param_list.size();
T
typhoonzero 已提交
83
    rpc_service_->Start();
T
typhoonzero 已提交
84 85
    // TODO(typhoonzero): change this to a while_op for every cluster-batch.
    while (true) {
T
done  
typhoonzero 已提交
86 87 88
      // Get from multiple trainers, we don't care about order in which
      // the gradient arrives, just add suffix 0~n then average the gradient.
      for (size_t i = 0; i < param_count * trainer_count; ++i) {
T
typhoonzero 已提交
89 90 91 92 93 94 95 96
        // blocking get one var from client.
        const detail::TensorWithName &v = rpc_service_->Get();
        auto grad_var_name = v.first;
        auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name);
        std::string param_var_name;
        if (it != grad_list.end()) {
          param_var_name = param_list[it - grad_list.begin()];
        }
T
typhoonzero 已提交
97 98
        VLOG(3) << "recved grad: " << grad_var_name
                << " updating param: " << param_var_name;
T
typhoonzero 已提交
99 100 101
        auto *merged_grad = recv_scope.FindVar(grad_var_name);
        if (merged_grad == nullptr) {
          // create output of merged var.
T
typhoonzero 已提交
102 103
          auto merged_var = recv_scope.Var(grad_var_name);
          merged_var->GetMutable<framework::LoDTensor>();
T
typhoonzero 已提交
104 105
        }

T
done  
typhoonzero 已提交
106
        if (trainer_count > 1) {
T
typhoonzero 已提交
107
          grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
T
done  
typhoonzero 已提交
108 109
        }

T
typhoonzero 已提交
110 111 112 113
        auto *var = recv_scope.Var(grad_var_name);
        auto *tensor = var->GetMutable<framework::LoDTensor>();
        // FIXME(typhoonzero): do not copy
        framework::CopyFrom(v.second, dev_ctx.GetPlace(), dev_ctx, tensor);
T
typhoonzero 已提交
114
      }
T
typhoonzero 已提交
115
      rpc_service_->Start();
武毅 已提交
116

T
typhoonzero 已提交
117 118 119 120 121 122 123 124 125 126 127 128
      std::string program_str = Attr<std::string>("OptimizeProgram");
      framework::ProgramDesc program_desc;
      program_desc.ParseFromString(program_str);
      framework::ProgramDescBind program(program_desc);
      framework::Executor executor(dev_ctx);
      // Run sub graph to get optimized tensor
      try {
        executor.Run(program, &recv_scope, 0, /*global_block*/
                     false /*create_local_scope*/, false /*create_vars*/);
      } catch (std::exception &e) {
        LOG(ERROR) << "run sub program error " << e.what();
      }
T
typhoonzero 已提交
129
      rpc_service_->Done();
T
typhoonzero 已提交
130
      grads_counter_.clear();
T
typhoonzero 已提交
131
    }  // while(true)
武毅 已提交
132 133 134 135 136 137 138 139 140
  }

 protected:
  // grpc server instance to track status and gracefully shutdown.
  // borrow an pointer from server thread.
  Server *rpc_server_{nullptr};
  // grpc send/recv service implement to register.
  std::shared_ptr<detail::SendRecvServerImpl> rpc_service_;
  std::shared_ptr<std::thread> server_thread_;
T
done  
typhoonzero 已提交
141
  mutable std::unordered_map<std::string, int> grads_counter_;
武毅 已提交
142 143 144 145 146 147
};

class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  RecvOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
T
typhoonzero 已提交
148
    AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
武毅 已提交
149 150 151 152 153 154 155 156 157 158
    AddComment(R"DOC(
Recv operator

This operator will recv tensor from send_op
)DOC");
    AddAttr<std::string>("endpoint",
                         "(string, default 127.0.0.1:6164)"
                         "IP address to listen on.")
        .SetDefault("127.0.0.1:6164")
        .AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
T
typhoonzero 已提交
159 160
    AddAttr<std::string>("OptimizeProgram", "type string",
                         "Serialized ProgramDesc string for recv to run.");
T
typhoonzero 已提交
161 162 163 164 165 166
    AddAttr<std::vector<std::string>>(
        "ParamList", "type list of string",
        "grad->param name mapping to find which param to optimize.");
    AddAttr<std::vector<std::string>>(
        "GradList", "type list of string",
        "grad->param name mapping to find which param to optimize.");
T
done  
typhoonzero 已提交
167 168 169
    AddAttr<int>("Trainers", "type int",
                 "Number of trainers in the current cluster job")
        .SetDefault(1);
武毅 已提交
170 171 172 173 174 175 176 177 178
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker);