rmsprop_op.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/rmsprop_op.h"
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class RmspropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext *ctx) const override {
C
Chengmo 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    PADDLE_ENFORCE_EQ(ctx->HasInput("Param"), true,
                      platform::errors::NotFound(
                          "Input(Param) of RmspropOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("MeanSquare"), true,
        platform::errors::NotFound(
            "Input(MeanSquare) of RmspropOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("LearningRate"), true,
        platform::errors::NotFound(
            "Input(LearningRate) of RmspropOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Grad"), true,
                      platform::errors::NotFound(
                          "Input(Grad) of RmspropOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Moment"), true,
                      platform::errors::NotFound(
                          "Input(Moment) of RmspropOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->GetInputsVarType("Param").front(),
                      framework::proto::VarType::LOD_TENSOR,
                      platform::errors::InvalidArgument(
                          "The input var's type in RmspropOp should be "
                          "LoDTensor, but the received is %s",
                          ctx->GetInputsVarType("Param").front()));
48

C
Chengmo 已提交
49 50 51 52 53 54 55 56 57 58 59 60
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("ParamOut"), true,
        platform::errors::NotFound(
            "Output(param_out) of RmspropOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("MomentOut"), true,
        platform::errors::NotFound(
            "Output(MomentOut) of RmspropOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("MeanSquareOut"), true,
        platform::errors::NotFound(
            "Output(MeanSquareOut) of RmspropOp should not be null."));
61
    if (ctx->Attrs().Get<bool>("centered")) {
C
Chengmo 已提交
62 63 64 65
      PADDLE_ENFORCE_EQ(
          ctx->HasOutput("MeanGradOut"), true,
          platform::errors::NotFound(
              "Output(MeanGradOut) of RmspropOp should not be null."));
66
    }
67 68 69 70

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
C
Chengmo 已提交
71 72 73 74
        platform::errors::InvalidArgument(
            "Param and grad input of RmspropOp should have the same dimension. "
            "But received Param's dim [%s] and Grad's dim [%s].",
            param_dim, ctx->GetInputDim("Grad")));
75
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Moment"),
C
Chengmo 已提交
76 77 78 79 80
                      platform::errors::InvalidArgument(
                          "Param and Momentum input of RmspropOp "
                          "should have the same dimension. But received "
                          "Param's dim [%s] and Moment [%s]",
                          param_dim, ctx->GetInputDim("Moment")));
81
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("MeanSquare"),
C
Chengmo 已提交
82 83 84 85 86
                      platform::errors::InvalidArgument(
                          "Param and Momentum input of RmspropOp "
                          "should have the same dimension. But received "
                          "Param's dim [%s] and MeanSquare [%s]",
                          param_dim, ctx->GetInputDim("MeanSquare")));
87

K
Kavya Srinet 已提交
88 89
    auto lr_dim = ctx->GetInputDim("LearningRate");
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
C
Chengmo 已提交
90 91 92 93
                      platform::errors::InvalidArgument(
                          "Learning Rate of RmspropOp should be a scalar. But "
                          "received LearningRate's dim [%s]",
                          framework::product(lr_dim)));
K
Kavya Srinet 已提交
94

95 96
    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("MomentOut", param_dim);
97
    ctx->SetOutputDim("MeanSquareOut", param_dim);
98 99 100
    if (ctx->Attrs().Get<bool>("centered")) {
      ctx->SetOutputDim("MeanGradOut", param_dim);
    }
101 102 103 104 105
  }
};

class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
106
  void Make() override {
107 108
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
109
             "Input parameter value that has to be updated.");
110 111
    AddInput("MeanSquare",
             "(Tensor, default Tensor<float>)"
K
kexinzhao 已提交
112
             " The mean square value that gets updated.");
113 114 115 116
    AddInput("MeanGrad",
             "(Tensor, default Tensor<float>)"
             " The moving average of gradient")
        .AsDispensable();
117 118
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
119
             "The learning rate should be a tensor of size 1.");
120 121
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
K
kexinzhao 已提交
122
             "Input gradient of the parameter.");
123
    AddInput("Moment",
K
kexinzhao 已提交
124
             "(Tensor, default Tensor<float>) The moment that gets updated.");
125

K
kexinzhao 已提交
126 127 128
    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
    AddOutput("MomentOut", "(Tensor) Output updated moment.");
    AddOutput("MeanSquareOut", "(Tensor) Output Mean squared updated value.");
129 130
    AddOutput("MeanGradOut",
              "(Tensor) Output moving average of gradient updated value.");
131 132 133 134

    AddAttr<float>("epsilon",
                   "(float, default 1e-10) Constant "
                   "for numerical stability.")
135
        .SetDefault(1.0e-10f);
136 137 138
    AddAttr<float>("decay",
                   "(float, default 0.9) "
                   "Discounting factor for coming gradient.")
139
        .SetDefault(0.9f);
K
kexinzhao 已提交
140
    AddAttr<float>("momentum", "(float, default 0.0) Constant value.")
141
        .SetDefault(0.0f);
142 143
    AddAttr<bool>("centered", "(bool, default false) use centered rmsprop.")
        .SetDefault(false);
144
    AddComment(R"DOC(
K
kexinzhao 已提交
145
Rmsprop Optimizer. 
146

K
kexinzhao 已提交
147 148
$$
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad \\
149
MomentOut = momentum * Moment +
K
kexinzhao 已提交
150
            \frac{LearningRate * Grad}{\sqrt{MeanSquareOut + epsilon}} \\
151
ParamOut = Param -  MomentOut
K
kexinzhao 已提交
152
$$
153

154 155 156 157 158 159 160 161
if centered is true:

mean_grad = decay * mean_square{t-1} + (1-decay) * gradient
mean_square = decay * mean_square{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t /
    sqrt(mean_square - mean_grad**2 + epsilon)
param -= mom

K
kexinzhao 已提交
162
The original slides that proposed Rmsprop: Slide 29 of
163 164 165 166 167 168 169 170 171 172
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker);
Q
QI JUN 已提交
173
REGISTER_OP_CPU_KERNEL(
M
MRXLT 已提交
174 175
    rmsprop, ops::RmspropOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::RmspropOpKernel<paddle::platform::CPUDeviceContext, double>);