test_image_classification.py 10.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid as fluid
19
import contextlib
20 21
import math
import sys
22 23
import numpy
import unittest
武毅 已提交
24
import os
25
import tempfile
26
import numpy as np
Q
Qiao Longfei 已提交
27

P
pangyoki 已提交
28 29
paddle.enable_static()

Q
Qiao Longfei 已提交
30

31
def resnet_cifar10(input, depth=32):
32

33 34 35 36 37 38 39
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
40 41 42 43 44 45 46
        tmp = fluid.layers.conv2d(input=input,
                                  filter_size=filter_size,
                                  num_filters=ch_out,
                                  stride=stride,
                                  padding=padding,
                                  act=None,
                                  bias_attr=bias_attr)
47
        return fluid.layers.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
48

49
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
50
        if ch_in != ch_out:
51
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
52 53 54
        else:
            return input

Q
Qiao Longfei 已提交
55 56
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
57
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
58
        short = shortcut(input, ch_in, ch_out, stride)
59
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
Q
Qiao Longfei 已提交
60

61 62
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
63
        for i in range(1, count):
64
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
65 66 67
        return tmp

    assert (depth - 2) % 6 == 0
M
minqiyang 已提交
68
    n = (depth - 2) // 6
69 70 71 72 73
    conv1 = conv_bn_layer(input=input,
                          ch_out=16,
                          filter_size=3,
                          stride=1,
                          padding=1)
Q
Qiao Longfei 已提交
74 75 76
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
77 78 79 80
    pool = fluid.layers.pool2d(input=res3,
                               pool_size=8,
                               pool_type='avg',
                               pool_stride=1)
Q
Qiao Longfei 已提交
81 82 83
    return pool


84
def vgg16_bn_drop(input):
85

Q
Qiao Longfei 已提交
86
    def conv_block(input, num_filter, groups, dropouts):
87 88 89 90 91 92 93 94 95
        return fluid.nets.img_conv_group(input=input,
                                         pool_size=2,
                                         pool_stride=2,
                                         conv_num_filter=[num_filter] * groups,
                                         conv_filter_size=3,
                                         conv_act='relu',
                                         conv_with_batchnorm=True,
                                         conv_batchnorm_drop_rate=dropouts,
                                         pool_type='max')
Q
Qiao Longfei 已提交
96

97 98 99 100 101
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
102

103
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
104
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
105
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
106
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
107
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
Q
Qiao Longfei 已提交
108 109 110
    return fc2


武毅 已提交
111
def train(net_type, use_cuda, save_dirname, is_local):
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
129
    avg_cost = fluid.layers.mean(cost)
130 131
    acc = fluid.layers.accuracy(input=predict, label=label)

132
    # Test program
133
    test_program = fluid.default_main_program().clone(for_test=True)
134 135

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
136
    optimizer.minimize(avg_cost)
137 138 139 140

    BATCH_SIZE = 128
    PASS_NUM = 1

141 142 143
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.cifar.train10(), buf_size=128 * 10),
                                batch_size=BATCH_SIZE)
144

145 146
    test_reader = paddle.batch(paddle.dataset.cifar.test10(),
                               batch_size=BATCH_SIZE)
147

148 149 150
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
                        loss_t, acc_t = exe.run(program=test_program,
                                                feed=feeder.feed(test_data),
                                                fetch_list=[avg_cost, acc])
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

175
                    print(
176 177 178
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
                        .format(pass_id, batch_id + 1, float(avg_loss_value),
                                float(acc_value)))
武毅 已提交
179 180 181 182 183 184 185 186 187

                    if acc_value > 0.01:  # Low threshold for speeding up CI
                        fluid.io.save_inference_model(save_dirname, ["pixel"],
                                                      [predict], exe)
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
188 189
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
190 191 192 193
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
194
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
195
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
196 197
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
198
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
199
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
200 201 202 203 204 205 206 207
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
208 209 210 211 212 213 214 215 216


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

217 218 219
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
220
        # the feed_target_names (the names of variables that will be fed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
236

237
        print("infer results: ", results[0])
238

239
        fluid.io.save_inference_model(save_dirname, feed_target_names,
240
                                      fetch_targets, exe, inference_program)
241

242

武毅 已提交
243
def main(net_type, use_cuda, is_local=True):
244 245 246 247
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
248 249 250
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(
        temp_dir.name, "image_classification_" + net_type + ".inference.model")
251

武毅 已提交
252
    train(net_type, use_cuda, save_dirname, is_local)
253
    infer(use_cuda, save_dirname)
254
    temp_dir.cleanup()
255 256 257


class TestImageClassification(unittest.TestCase):
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()