test_image_classification.py 10.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid as fluid
19
import contextlib
20 21
import math
import sys
22 23
import numpy
import unittest
武毅 已提交
24
import os
25
import numpy as np
Q
Qiao Longfei 已提交
26

P
pangyoki 已提交
27 28
paddle.enable_static()

Q
Qiao Longfei 已提交
29

30
def resnet_cifar10(input, depth=32):
31

32 33 34 35 36 37 38
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
39 40 41 42 43 44 45
        tmp = fluid.layers.conv2d(input=input,
                                  filter_size=filter_size,
                                  num_filters=ch_out,
                                  stride=stride,
                                  padding=padding,
                                  act=None,
                                  bias_attr=bias_attr)
46
        return fluid.layers.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
47

48
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
49
        if ch_in != ch_out:
50
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
51 52 53
        else:
            return input

Q
Qiao Longfei 已提交
54 55
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
56
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
57
        short = shortcut(input, ch_in, ch_out, stride)
58
        return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')
Q
Qiao Longfei 已提交
59

60 61
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
62
        for i in range(1, count):
63
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
64 65 66
        return tmp

    assert (depth - 2) % 6 == 0
M
minqiyang 已提交
67
    n = (depth - 2) // 6
68 69 70 71 72
    conv1 = conv_bn_layer(input=input,
                          ch_out=16,
                          filter_size=3,
                          stride=1,
                          padding=1)
Q
Qiao Longfei 已提交
73 74 75
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
76 77 78 79
    pool = fluid.layers.pool2d(input=res3,
                               pool_size=8,
                               pool_type='avg',
                               pool_stride=1)
Q
Qiao Longfei 已提交
80 81 82
    return pool


83
def vgg16_bn_drop(input):
84

Q
Qiao Longfei 已提交
85
    def conv_block(input, num_filter, groups, dropouts):
86 87 88 89 90 91 92 93 94
        return fluid.nets.img_conv_group(input=input,
                                         pool_size=2,
                                         pool_stride=2,
                                         conv_num_filter=[num_filter] * groups,
                                         conv_filter_size=3,
                                         conv_act='relu',
                                         conv_with_batchnorm=True,
                                         conv_batchnorm_drop_rate=dropouts,
                                         pool_type='max')
Q
Qiao Longfei 已提交
95

96 97 98 99 100
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
101

102
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
103
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
104
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
105
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
106
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
Q
Qiao Longfei 已提交
107 108 109
    return fc2


武毅 已提交
110
def train(net_type, use_cuda, save_dirname, is_local):
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    classdim = 10
    data_shape = [3, 32, 32]

    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
128
    avg_cost = fluid.layers.mean(cost)
129 130
    acc = fluid.layers.accuracy(input=predict, label=label)

131
    # Test program
132
    test_program = fluid.default_main_program().clone(for_test=True)
133 134

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
135
    optimizer.minimize(avg_cost)
136 137 138 139

    BATCH_SIZE = 128
    PASS_NUM = 1

140 141 142
    train_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.cifar.train10(), buf_size=128 * 10),
                                batch_size=BATCH_SIZE)
143

144 145
    test_reader = paddle.batch(paddle.dataset.cifar.test10(),
                               batch_size=BATCH_SIZE)
146

147 148 149
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
                        loss_t, acc_t = exe.run(program=test_program,
                                                feed=feeder.feed(test_data),
                                                fetch_list=[avg_cost, acc])
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

174
                    print(
175 176 177
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
                        .format(pass_id, batch_id + 1, float(avg_loss_value),
                                float(acc_value)))
武毅 已提交
178 179 180 181 182 183 184 185 186

                    if acc_value > 0.01:  # Low threshold for speeding up CI
                        fluid.io.save_inference_model(save_dirname, ["pixel"],
                                                      [predict], exe)
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
187 188
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
189 190 191 192
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
193
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
194
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
195 196
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
197
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
198
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
199 200 201 202 203 204 205 206
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
207 208 209 210 211 212 213 214 215


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

216 217 218
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
219
        # the feed_target_names (the names of variables that will be fed
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
235

236
        print("infer results: ", results[0])
237

238
        fluid.io.save_inference_model(save_dirname, feed_target_names,
239
                                      fetch_targets, exe, inference_program)
240

241

武毅 已提交
242
def main(net_type, use_cuda, is_local=True):
243 244 245 246 247 248
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
    save_dirname = "image_classification_" + net_type + ".inference.model"

武毅 已提交
249
    train(net_type, use_cuda, save_dirname, is_local)
250
    infer(use_cuda, save_dirname)
251 252 253


class TestImageClassification(unittest.TestCase):
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()