test_assign_op.py 8.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
18
import numpy as np
Y
Yu Yang 已提交
19
import unittest
20
import paddle
21 22 23 24
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
25
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
26 27 28 29 30


class TestAssignOp(op_test.OpTest):
    def setUp(self):
        self.op_type = "assign"
31
        x = np.random.random(size=(100, 10)).astype('float64')
Y
Yu Yang 已提交
32 33 34 35 36 37 38 39 40 41
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
        self.check_output()

    def test_backward(self):
        self.check_grad(['X'], 'Out')


42 43 44 45 46 47 48 49 50 51 52 53 54 55
class TestAssignFP16Op(op_test.OpTest):
    def setUp(self):
        self.op_type = "assign"
        x = np.random.random(size=(100, 10)).astype('float16')
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
        self.check_output()

    def test_backward(self):
        self.check_grad(['X'], 'Out')


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
class TestAssignOpWithLoDTensorArray(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1)
            z = fluid.layers.elementwise_add(x=x, y=y)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = fluid.layers.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
            mean = fluid.layers.mean(sums)
            append_backward(mean)

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
        res = exe.run(main_program,
                      feed={'x': feed_x},
                      fetch_list=[sums.name, x.grad_name])
        self.assertTrue(np.allclose(res[0], feed_add))
        self.assertTrue(np.allclose(res[1], ones / 1000.0))


86
class TestAssignOpError(unittest.TestCase):
87 88 89 90 91 92 93
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
94 95
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, fluid.layers.assign, x2)
96 97


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
class TestAssignOApi(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1)
            z = fluid.layers.elementwise_add(x=x, y=y)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = paddle.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
            mean = fluid.layers.mean(sums)
            append_backward(mean)

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
        res = exe.run(main_program,
                      feed={'x': feed_x},
                      fetch_list=[sums.name, x.grad_name])
        self.assertTrue(np.allclose(res[0], feed_add))
        self.assertTrue(np.allclose(res[1], ones / 1000.0))

    def test_assign_NumpyArray(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.bool)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray1(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.float32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray2(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

    def test_assign_NumpyArray3(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
        self.assertTrue(np.allclose(result1.numpy(), array))

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def test_assign_List(self):
        paddle.disable_static()
        l = [1, 2, 3]
        result = paddle.assign(l)
        self.assertTrue(np.allclose(result.numpy(), np.array(l)))
        paddle.enable_static()

    def test_assign_BasicTypes(self):
        paddle.disable_static()
        result1 = paddle.assign(2)
        result2 = paddle.assign(3.0)
        result3 = paddle.assign(True)
        self.assertTrue(np.allclose(result1.numpy(), np.array([2])))
        self.assertTrue(np.allclose(result2.numpy(), np.array([3.0])))
        self.assertTrue(np.allclose(result3.numpy(), np.array([1])))
        paddle.enable_static()

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    def test_clone(self):
        paddle.disable_static()
        x = paddle.ones([2])
        x.stop_gradient = False
        clone_x = paddle.clone(x)

        y = clone_x**3
        y.backward()

        self.assertTrue(np.array_equal(x, [1, 1]), True)
        self.assertTrue(np.array_equal(clone_x.grad.numpy(), [3, 3]), True)
        self.assertTrue(np.array_equal(x.grad.numpy(), [3, 3]), True)
        paddle.enable_static()

        with program_guard(Program(), Program()):
            x_np = np.random.randn(2, 3).astype('float32')
            x = paddle.static.data("X", shape=[2, 3])
            clone_x = paddle.clone(x)
            exe = paddle.static.Executor()
            y_np = exe.run(paddle.static.default_main_program(),
                           feed={'X': x_np},
                           fetch_list=[clone_x])[0]

        self.assertTrue(np.array_equal(y_np, x_np), True)

197 198 199 200 201 202 203 204 205

class TestAssignOpErrorApi(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, paddle.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
206 207
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, paddle.assign, x2)
208

209 210 211 212 213 214 215
    def test_type_error(self):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            x = [paddle.randn([3, 3]), paddle.randn([3, 3])]
            # not support to assign list(var)
            self.assertRaises(TypeError, paddle.assign, x)

216

Y
Yu Yang 已提交
217
if __name__ == '__main__':
218
    paddle.enable_static()
Y
Yu Yang 已提交
219
    unittest.main()