test_assign_op.py 2.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
18
import numpy as np
Y
Yu Yang 已提交
19
import unittest
20 21 22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
Yu Yang 已提交
24 25 26 27 28


class TestAssignOp(op_test.OpTest):
    def setUp(self):
        self.op_type = "assign"
29
        x = np.random.random(size=(100, 10))
Y
Yu Yang 已提交
30 31 32 33 34 35 36 37 38 39
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
        self.check_output()

    def test_backward(self):
        self.check_grad(['X'], 'Out')


40 41 42 43 44 45 46
class TestAssignOpError(op_test.OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.assign, x1)
G
Guo Sheng 已提交
47
            # When the type of input is Variable, the dtype of input must be float32, float64, int32, int64, bool.
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="float16")
            self.assertRaises(TypeError, fluid.layers.assign, x3)
            x4 = fluid.layers.data(name='x4', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.assign, x4)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
            x5 = np.array([[2.5, 2.5]], dtype='bool')
            self.assertRaises(TypeError, fluid.layers.assign, x5)
            x6 = np.array([[2.5, 2.5]], dtype='float16')
            self.assertRaises(TypeError, fluid.layers.assign, x6)
            x7 = np.array([[2.5, 2.5]], dtype='float64')
            self.assertRaises(TypeError, fluid.layers.assign, x7)
            x8 = np.array([[2.5, 2.5]], dtype='int64')
            self.assertRaises(TypeError, fluid.layers.assign, x8)
            x9 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, fluid.layers.assign, x9)


Y
Yu Yang 已提交
65 66
if __name__ == '__main__':
    unittest.main()