multi_trainer.cc 2.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
24
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
D
dongdaxiang 已提交
25
                              const Dataset& dataset) {
26 27 28
  thread_num_ = trainer_desc.thread_num();
  // get filelist from trainer_desc here
  workers_.resize(thread_num_);
D
dongdaxiang 已提交
29

D
dongdaxiang 已提交
30
  /*
D
dongdaxiang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
  if (NULL == dataset) {
    readers_.resize(thread_num_);
    for (int i = 0; i < thread_num_; ++i) {
      readers_[i] =
          DataFeedFactory::CreateDataFeed(trainer_desc.data_desc().name());
      readers_[i]->Init(trainer_desc.data_desc());
    }
    std::vector<std::string> filelist_vec;
    for (unsigned i = 0; i < trainer_desc.filelist_size(); ++i) {
      filelist_vec.push_back(trainer_desc.filelist(i));
    }
    readers_[0]->SetFileList(filelist_vec);
  } else {
    // readers_ = dataset.get_readers(); ?
  }
D
dongdaxiang 已提交
46
  */
D
dongdaxiang 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
    workers_[i]->SetDataFeed(readers_[i]);
  }
}

// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
}

void MultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    threads_.push_back(
        std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
  }
}

void MultiTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
}

}  // end namespace framework
}  // end namespace paddle