multi_trainer.cc 2.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
24 25
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
                              Dataset* dataset) {
26 27 28
  thread_num_ = trainer_desc.thread_num();
  // get filelist from trainer_desc here
  workers_.resize(thread_num_);
D
dongdaxiang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

  if (NULL == dataset) {
    readers_.resize(thread_num_);
    for (int i = 0; i < thread_num_; ++i) {
      readers_[i] =
          DataFeedFactory::CreateDataFeed(trainer_desc.data_desc().name());
      readers_[i]->Init(trainer_desc.data_desc());
    }
    std::vector<std::string> filelist_vec;
    for (unsigned i = 0; i < trainer_desc.filelist_size(); ++i) {
      filelist_vec.push_back(trainer_desc.filelist(i));
    }
    readers_[0]->SetFileList(filelist_vec);
  } else {
    // readers_ = dataset.get_readers(); ?
  }

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
    workers_[i]->SetDataFeed(readers_[i]);
  }
}

// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
}

void MultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    threads_.push_back(
        std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
  }
}

void MultiTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
}

}  // end namespace framework
}  // end namespace paddle