ps_gpu_wrapper.cc 46.5 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

31 32
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"

T
Thunderbrook 已提交
33
#include <algorithm>
Y
yaoxuefeng 已提交
34 35
#include <deque>

D
danleifeng 已提交
36
#include "paddle/fluid/framework/data_set.h"
T
Thunderbrook 已提交
37
#include "paddle/fluid/platform/timer.h"
38 39 40
#if defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/ps/table/depends/feature_value.h"
#endif
T
Thunderbrook 已提交
41 42 43 44

namespace paddle {
namespace framework {

T
Thunderbrook 已提交
45
#ifdef PADDLE_WITH_PSLIB
46 47 48 49 50 51
void AfsWrapper::init(const std::string& fs_name,
                      const std::string& fs_user,
                      const std::string& pass_wd,
                      const std::string& conf) {
  int ret = afs_handler_.init(
      fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(), conf.c_str());
T
Thunderbrook 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
}

int AfsWrapper::remove(const std::string& path) {
  return afs_handler_.remove(path);
}

int AfsWrapper::mkdir(const std::string& path) {
  return afs_handler_.mkdir(path);
}

std::vector<std::string> AfsWrapper::list(const std::string& path) {
  return afs_handler_.list(path);
}

int AfsWrapper::exist(const std::string& path) {
  return afs_handler_.exist(path);
}

int AfsWrapper::upload(const std::string& local_file,
                       const std::string& afs_file) {
  return afs_handler_.upload_file(local_file, afs_file);
}

int AfsWrapper::download(const std::string& local_file,
                         const std::string& afs_file) {
  return afs_handler_.download_file(local_file, afs_file);
}
82 83 84 85 86 87 88 89 90 91 92 93

int AfsWrapper::touchz(const std::string& path) {
  return afs_handler_.touchz(path);
}

std::string AfsWrapper::cat(const std::string& path) {
  return afs_handler_.cat(path);
}

int AfsWrapper::mv(const std::string& old_path, const std::string& dest_path) {
  return afs_handler_.mv(old_path, dest_path);
}
T
Thunderbrook 已提交
94 95
#endif

T
Thunderbrook 已提交
96 97
std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;
T
Thunderbrook 已提交
98 99 100 101 102
#ifdef PADDLE_WITH_PSLIB
void PSGPUWrapper::InitAfsApi(const std::string& fs_name,
                              const std::string& fs_user,
                              const std::string& pass_wd,
                              const std::string& conf) {
103 104
  int ret = afs_handler_.init(
      fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(), conf.c_str());
T
Thunderbrook 已提交
105
  if (ret != 0) {
106
    VLOG(0) << "AFS Init Error";
T
Thunderbrook 已提交
107 108 109 110
  }
  use_afs_api_ = 1;
}
#endif
111
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
112
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
113 114
  platform::Timer timeline;
  timeline.Start();
115
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
116
  gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
117

Y
yaoxuefeng 已提交
118
  std::vector<std::thread> threads;
Y
yaoxuefeng 已提交
119 120 121 122 123 124 125 126

  // data should be in input channel

  thread_dim_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_dim_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      thread_dim_keys_[i][j].resize(multi_mf_dim_);
127
    }
Y
yaoxuefeng 已提交
128
  }
Y
yaoxuefeng 已提交
129 130 131 132

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
133
  size_t begin = 0;
Y
yaoxuefeng 已提交
134 135 136 137

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
D
danleifeng 已提交
138
    SlotRecordDataset* dataset = (SlotRecordDataset*)(dataset_);
Y
yaoxuefeng 已提交
139
    auto input_channel = dataset->GetInputChannel();
Y
yaoxuefeng 已提交
140
    VLOG(0) << "psgpu wrapperinputslotchannle size: " << input_channel->Size();
Y
yaoxuefeng 已提交
141 142 143 144 145
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
146
    auto gen_dynamic_mf_func = [this](const std::deque<SlotRecord>& total_data,
147 148 149
                                      int begin_index,
                                      int end_index,
                                      int i) {
150
      for (auto iter = total_data.begin() + begin_index;
151 152
           iter != total_data.begin() + end_index;
           iter++) {
153 154 155 156 157 158
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
        for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
             slot_idx++) {
          for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
159 160
               j < slot_offset[slot_offset_vector_[slot_idx] + 1];
               j++) {
161 162
            int shard_id = feasign_v[j] % thread_keys_shard_num_;
            int dim_id = slot_index_vec_[slot_idx];
Y
yaoxuefeng 已提交
163 164 165
            if (feasign_v[j] != 0) {
              this->thread_dim_keys_[i][shard_id][dim_id].insert(feasign_v[j]);
            }
166 167 168 169
          }
        }
      }
    };
Y
yaoxuefeng 已提交
170
    for (int i = 0; i < thread_keys_thread_num_; i++) {
Y
yaoxuefeng 已提交
171
      threads.push_back(
172 173 174 175 176
          std::thread(gen_dynamic_mf_func,
                      std::ref(vec_data),
                      begin,
                      begin + len_per_thread + (i < remain ? 1 : 0),
                      i));
Y
yaoxuefeng 已提交
177

Y
yaoxuefeng 已提交
178
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
179
    }
Y
yaoxuefeng 已提交
180 181 182 183
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
184
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
185 186 187
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
D
danleifeng 已提交
188
    MultiSlotDataset* dataset = (MultiSlotDataset*)(dataset_);
Y
yaoxuefeng 已提交
189 190 191 192 193 194 195
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
196 197 198
                           int begin_index,
                           int end_index,
                           int i) {
Y
yaoxuefeng 已提交
199
      for (auto iter = total_data.begin() + begin_index;
200 201
           iter != total_data.begin() + end_index;
           iter++) {
Y
yaoxuefeng 已提交
202 203 204 205 206 207 208 209 210 211 212
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
213 214 215 216 217
          std::thread(gen_func,
                      std::ref(vec_data),
                      begin,
                      begin + len_per_thread + (i < remain ? 1 : 0),
                      i));
Y
yaoxuefeng 已提交
218 219 220 221 222 223
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
224
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
225 226 227 228
  }

  timeline.Start();

229
  threads.clear();
Y
yaoxuefeng 已提交
230
  // merge thread_keys to shard_keys
231 232
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
233 234
      gpu_task->batch_add_keys(
          shard_num, dim_id, thread_dim_keys_[i][shard_num][dim_id]);
235 236 237
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
238
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
Y
yaoxuefeng 已提交
239 240
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
241
    }
242 243 244
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
245 246 247
  }
  timeline.Pause();

248
  VLOG(0) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
249 250 251 252 253
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

254
  VLOG(0) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
255 256 257 258 259 260
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      VLOG(0) << "GpuPs shard: " << i << "mf dim: " << index_dim_vec_[j]
              << " key len: " << gpu_task->feature_dim_keys_[i][j].size();
      gpu_task->value_dim_ptr_[i][j].resize(
          gpu_task->feature_dim_keys_[i][j].size());
261
    }
Y
yaoxuefeng 已提交
262
  }
263 264 265 266
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
T
Thunderbrook 已提交
267
  std::vector<std::future<void>> task_futures;
268 269 270 271
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

272 273 274
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

275 276
  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
277 278 279
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
Y
yaoxuefeng 已提交
280 281 282 283

  for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
    device_dim_keys[dev].resize(multi_mf_dim_);
    device_dim_ptr[dev].resize(multi_mf_dim_);
284
  }
Y
yaoxuefeng 已提交
285

T
Thunderbrook 已提交
286
  // auto& device_mutex = gpu_task->mutex_;
287 288 289 290 291 292

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
293
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
294
#endif
295

296
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
297 298 299 300 301 302 303 304 305 306 307
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

308
  timeline.Start();
309

310 311 312 313 314
  auto ptl_dynamic_mf_func =
      [this, &local_dim_keys, &local_dim_ptr, &fleet_ptr](int i, int j) {
        size_t key_size = local_dim_keys[i][j].size();
        int32_t status = -1;
        int32_t cnt = 0;
315
#ifdef PADDLE_WITH_PSLIB
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        while (true) {
          auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
              i,
              reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
              this->table_id_,
              local_dim_keys[i][j].data(),
              key_size);
          bool flag = true;

          tt.wait();

          try {
            status = tt.get();
          } catch (const std::future_error& e) {
            VLOG(0) << "Caught a future_error with code" << e.code()
                    << ", Message:" << e.what();
          }
          if (status != 0) {
            VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
            sleep(sleep_seconds_before_fail_exit_);
            flag = false;
            cnt++;
          }
          if (cnt > 3) {
            VLOG(0) << "fleet pull sparse failed, retry 3 times";
            exit(-1);
          }
343

344 345 346 347
          if (flag) {
            break;
          }
        }
348 349
#endif
#ifdef PADDLE_WITH_PSCORE
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        while (true) {
          auto tt = fleet_ptr->worker_ptr_->PullSparsePtr(
              reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
              this->table_id_,
              local_dim_keys[i][j].data(),
              key_size);
          bool flag = true;

          tt.wait();

          try {
            status = tt.get();
          } catch (const std::future_error& e) {
            VLOG(0) << "Caught a future_error with code" << e.code()
                    << ", Message:" << e.what();
          }
          if (status != 0) {
            VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
            sleep(sleep_seconds_before_fail_exit_);
            flag = false;
            cnt++;
          }
          if (cnt > 3) {
            VLOG(0) << "fleet pull sparse failed, retry 3 times";
            exit(-1);
          }
376

377 378 379 380
          if (flag) {
            break;
          }
        }
381
#endif
382 383 384 385 386 387 388 389 390
        if (status != 0) {
          LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
          sleep(300);
          exit(-1);
        } else {
          VLOG(0) << "FleetWrapper Pull sparse to local done with table size: "
                  << local_dim_keys[i][j].size();
        }
      };
Y
yaoxuefeng 已提交
391 392 393 394 395 396

  threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      task_futures.emplace_back(
          pull_thread_pool_[i]->enqueue(ptl_dynamic_mf_func, i, j));
397
    }
398
  }
Y
yaoxuefeng 已提交
399 400
  for (auto& f : task_futures) {
    f.wait();
401
  }
Y
yaoxuefeng 已提交
402
  task_futures.clear();
403
  timeline.Pause();
T
Thunderbrook 已提交
404
  VLOG(0) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
405
          << " seconds.";
Y
yaoxuefeng 已提交
406 407 408 409 410 411 412 413
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
414 415

  timeline.Start();
Y
yaoxuefeng 已提交
416 417 418
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
T
Thunderbrook 已提交
419 420
  auto& device_task_keys = gpu_task->device_task_keys_;
  auto& device_task_ptrs = gpu_task->device_task_ptr_;
421 422 423 424 425
  auto build_pull_dynamic_mf_func = [this,
                                     device_num,
                                     &local_dim_keys,
                                     &local_dim_ptr,
                                     &device_dim_keys,
Y
yaoxuefeng 已提交
426 427
                                     &device_dim_ptr,
                                     &device_dim_mutex](int i, int j) {
428
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
429
#ifdef PADDLE_WITH_PSLIB
430 431
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
432 433 434 435 436 437
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::FixedFeatureValue*>> task_ptrs(
        device_num);
#endif
438 439 440 441 442
    for (size_t k = 0; k < local_dim_keys[i][j].size(); k++) {
      int shard = local_dim_keys[i][j][k] % device_num;
      task_keys[shard].push_back(local_dim_keys[i][j][k]);
      task_ptrs[shard].push_back(local_dim_ptr[i][j][k]);
    }
Y
yaoxuefeng 已提交
443
    // allocate local keys to devices
444
    for (int dev = 0; dev < device_num; dev++) {
Y
yaoxuefeng 已提交
445 446 447 448 449 450 451 452
      device_dim_mutex[dev][j]->lock();
      int len = task_keys[dev].size();
      int cur = device_dim_keys[dev][j].size();
      device_dim_keys[dev][j].resize(device_dim_keys[dev][j].size() + len);
      device_dim_ptr[dev][j].resize(device_dim_ptr[dev][j].size() + len);
      for (int k = 0; k < len; ++k) {
        device_dim_keys[dev][j][cur + k] = task_keys[dev][k];
        device_dim_ptr[dev][j][cur + k] = task_ptrs[dev][k];
453
      }
Y
yaoxuefeng 已提交
454
      device_dim_mutex[dev][j]->unlock();
455 456
    }
  };
457 458 459 460 461 462 463
  auto build_func = [device_num,
                     record_status,
                     &pass_values,
                     &local_keys,
                     &local_ptr,
                     &device_task_keys,
                     &device_task_ptrs](int i) {
T
Thunderbrook 已提交
464
    auto& task_keys = device_task_keys[i];
T
Thunderbrook 已提交
465
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
466
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
467 468 469
#endif

#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
470
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
471
#endif
472 473 474 475 476 477

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
478
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
494
#endif
T
Thunderbrook 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      task_futures.emplace_back(hbm_thread_pool_[i]->enqueue(build_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
    VLOG(0) << "GpuPs build hbmps done";
  }
  std::vector<std::vector<int>> prefix_sum;
  prefix_sum.resize(device_num);
  for (int i = 0; i < device_num; i++) {
    prefix_sum[i].resize(thread_keys_shard_num_ + 1);
    prefix_sum[i][0] = 0;
  }
512 513 514 515
  auto calc_prefix_func = [this,
                           &prefix_sum,
                           &device_keys,
                           &device_vals,
T
Thunderbrook 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                           &device_task_keys](int device_num) {
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      prefix_sum[device_num][j + 1] =
          prefix_sum[device_num][j] + device_task_keys[j][device_num].size();
    }
    device_keys[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
    device_vals[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      task_futures.emplace_back(
          hbm_thread_pool_[i]->enqueue(calc_prefix_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
  }
  VLOG(0) << "prefix done";
537 538 539 540 541
  auto prepare_dev_value_func = [device_num,
                                 &prefix_sum,
                                 &device_keys,
                                 &device_vals,
                                 &device_task_keys,
T
Thunderbrook 已提交
542
                                 &device_task_ptrs](int dev, int shard_id) {
D
danleifeng 已提交
543
  // auto& task_keys = device_task_keys[shard_id];
T
Thunderbrook 已提交
544 545 546 547
#ifdef PADDLE_WITH_PSLIB
    auto& task_ptrs = device_task_ptrs[shard_id];
#endif

D
danleifeng 已提交
548 549 550
    // #ifdef PADDLE_WITH_PSCORE
    //     auto& task_ptrs = device_task_ptrs[shard_id];
    // #endif
551

D
danleifeng 已提交
552 553
    // int len = prefix_sum[dev][shard_id + 1] - prefix_sum[dev][shard_id];
    // int cur = prefix_sum[dev][shard_id];
T
Thunderbrook 已提交
554
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
Y
yaoxuefeng 已提交
578 579
        }
      }
T
Thunderbrook 已提交
580
    }
T
Thunderbrook 已提交
581
#endif
T
Thunderbrook 已提交
582
    VLOG(3) << "GpuPs build hbmps done";
Y
yaoxuefeng 已提交
583
  };
584

T
Thunderbrook 已提交
585
  if (multi_mf_dim_) {
586 587 588
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] =
Y
yaoxuefeng 已提交
589
            std::thread(build_pull_dynamic_mf_func, i, j);
590 591
      }
    }
T
Thunderbrook 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605
    for (std::thread& t : threads) {
      t.join();
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < device_num; j++) {
        task_futures.emplace_back(
            hbm_thread_pool_[i]->enqueue(prepare_dev_value_func, j, i));
      }
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
Y
yaoxuefeng 已提交
606 607
  }
  timeline.Pause();
T
Thunderbrook 已提交
608
  VLOG(0) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
609
          << " seconds.";
Y
yaoxuefeng 已提交
610 611
}

612
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
613
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
614 615
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
616

617
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
618
  size_t size_max = 0;
Y
yaoxuefeng 已提交
619 620 621 622 623 624 625

  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      VLOG(1) << i << " card with dynamic mf dim: " << index_dim_vec_[j]
              << " dim index: " << j << " contains feasign nums: "
              << gpu_task->device_dim_ptr_[i][j].size();
626
    }
Y
yaoxuefeng 已提交
627 628 629
    VLOG(1) << i << " card with dynamic mf contains feasign nums total: "
            << feature_keys_count[i];
    size_max = std::max(size_max, feature_keys_count[i]);
T
Thunderbrook 已提交
630
  }
Y
yaoxuefeng 已提交
631

T
Thunderbrook 已提交
632
  if (HeterPs_) {
633 634
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
635
  }
636
  if (size_max <= 0) {
637
    VLOG(0) << "Skip build gpu ps cause feasign nums = " << size_max;
638 639
    return;
  }
640
  std::vector<std::thread> threads(device_num);
D
danleifeng 已提交
641 642 643 644
  auto accessor_wrapper_ptr =
      GlobalAccessorTransfor::GetInstance().GetAccessorWrapper();
  HeterPs_ = HeterPsBase::get_instance(
      size_max, resource_, fleet_config_, accessor_class_, optimizer_type_);
F
Fan Zhang 已提交
645
#ifdef PADDLE_WITH_CUDA
646
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
D
danleifeng 已提交
647 648
  HeterPs_->set_sparse_sgd(optimizer_config_);
  HeterPs_->set_embedx_sgd(optimizer_config_);
F
Fan Zhang 已提交
649
#endif
Z
zmxdream 已提交
650

D
danleifeng 已提交
651 652
  auto build_dymf_mem_pool = [this, &gpu_task, &accessor_wrapper_ptr](int i,
                                                                      int j) {
Y
yaoxuefeng 已提交
653 654
    this->HeterPs_->set_multi_mf_dim(multi_mf_dim_, max_mf_dim_);
    int mf_dim = this->index_dim_vec_[j];
D
danleifeng 已提交
655 656 657
    VLOG(0) << "building table: " << i << "with mf dim: " << mf_dim
            << " feature_value_size:"
            << accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
Y
yaoxuefeng 已提交
658
    size_t feature_value_size =
D
danleifeng 已提交
659
        accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
Y
yaoxuefeng 已提交
660 661 662 663 664 665
    auto& device_dim_keys = gpu_task->device_dim_keys_[i][j];
    auto& device_dim_ptrs = gpu_task->device_dim_ptr_[i][j];
    size_t len = device_dim_keys.size();
    CHECK(len == device_dim_ptrs.size());
    this->mem_pools_[i * this->multi_mf_dim_ + j] =
        new MemoryPool(len, feature_value_size);
Z
zmxdream 已提交
666
  };
D
danleifeng 已提交
667 668
  auto build_dymf_hbm_pool = [this, &gpu_task, &accessor_wrapper_ptr](int i,
                                                                      int j) {
Z
zmxdream 已提交
669 670 671 672
    auto& device_dim_keys = gpu_task->device_dim_keys_[i][j];
    size_t len = device_dim_keys.size();
    int mf_dim = this->index_dim_vec_[j];
    size_t feature_value_size =
D
danleifeng 已提交
673
        accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
Z
zmxdream 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

    auto& mem_pool = this->mem_pools_[i * this->multi_mf_dim_ + j];
    platform::CUDADeviceGuard guard(resource_->dev_id(i));
    this->hbm_pools_[i * this->multi_mf_dim_ + j] = new HBMMemoryPool(mem_pool);
    auto& cur_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];

    this->HeterPs_->build_ps(i,
                             device_dim_keys.data(),
                             cur_pool->mem(),
                             len,
                             feature_value_size,
                             500000,
                             2);
    if (device_dim_keys.size() > 0) {
      VLOG(3) << "show table: " << i
              << " table kv size: " << device_dim_keys.size()
              << "dim: " << mf_dim << " len: " << len;
      HeterPs_->show_one_table(i);
    }
    delete mem_pool;
  };
  int thread_num = 16;
D
danleifeng 已提交
696 697 698 699
  auto build_dynamic_mf_func = [this,
                                &gpu_task,
                                thread_num,
                                &accessor_wrapper_ptr](int i, int j, int z) {
Z
zmxdream 已提交
700 701 702 703 704 705 706 707 708
    // this->HeterPs_->set_multi_mf_dim(multi_mf_dim_, max_mf_dim_);
    int mf_dim = this->index_dim_vec_[j];
    VLOG(0) << "building table: " << i << "with mf dim: " << mf_dim;
    auto& device_dim_keys = gpu_task->device_dim_keys_[i][j];
    auto& device_dim_ptrs = gpu_task->device_dim_ptr_[i][j];
    size_t len = device_dim_keys.size();
    CHECK(len == device_dim_ptrs.size());
    // this->mem_pools_[i * this->multi_mf_dim_ + j] =
    //    new MemoryPool(len, feature_value_size);
Y
yaoxuefeng 已提交
709
    auto& mem_pool = this->mem_pools_[i * this->multi_mf_dim_ + j];
Z
zmxdream 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

    // ============ add for multi-thread ================
    size_t len_per_thread = len / thread_num;
    size_t remain = len % thread_num;
    size_t left = 0, right = 0;

    size_t real_len = len_per_thread;
    if ((size_t)z < remain) real_len++;

    if ((size_t)z < remain) {
      left = z * (len_per_thread + 1);
      right = left + real_len;
    } else {
      left = remain * (len_per_thread + 1) + (z - remain) * len_per_thread;
      right = left + real_len;
    }
    // ============ add for multi-thread ================

    for (size_t k = left; k < right; k++) {
D
danleifeng 已提交
729 730
#ifdef PADDLE_WITH_PSLIB
      float* val = (float*)(mem_pool->mem_address(k));
Y
yaoxuefeng 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
      float* ptr_val = device_dim_ptrs[k]->data();
      size_t dim = device_dim_ptrs[k]->size();
      val->delta_score =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::delta_score_index()];
      val->show = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                              DownpourCtrDymfFeatureValue::show_index()];
      val->clk = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                             DownpourCtrDymfFeatureValue::click_index()];
      val->slot = int(ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                                  DownpourCtrDymfFeatureValue::slot_index()]);
      val->lr = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                            DownpourCtrDymfFeatureValue::embed_w_index()];
      val->lr_g2sum =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::embed_g2sum_index()];
Y
yaoxuefeng 已提交
747
      // TODO(xuefeng) set mf_dim while using DownpourCtrDymfAccessor
Y
yaoxuefeng 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761
      ptr_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  mf_dim_index()] = float(mf_dim);
      val->mf_dim = mf_dim;
      if (dim > 8) {  // CpuPS alreay expand as mf_dim
        val->mf_size = mf_dim + 1;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = ptr_val[x + 8];
        }
      } else {
        val->mf_size = 0;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = 0;
        }
      }
D
danleifeng 已提交
762 763 764 765 766 767
#endif
#ifdef PADDLE_WITH_PSCORE
      void* val = mem_pool->mem_address(k);
      accessor_wrapper_ptr->BuildFill(
          val, device_dim_ptrs[k], cpu_table_accessor_, mf_dim);
#endif
Y
yaoxuefeng 已提交
768
    }
Z
zmxdream 已提交
769
  };
Y
yaoxuefeng 已提交
770

Z
zmxdream 已提交
771 772 773 774 775 776
  threads.resize(device_num * multi_mf_dim_);
  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads[i + j * device_num] = std::thread(build_dymf_mem_pool, i, j);
    }
  }
Y
yaoxuefeng 已提交
777

Z
zmxdream 已提交
778 779 780 781
  for (std::thread& t : threads) {
    t.join();
  }
  threads.clear();
Y
yaoxuefeng 已提交
782

Z
zmxdream 已提交
783 784 785 786 787 788 789 790
  // multi-thread process
  threads.resize(device_num * multi_mf_dim_ * thread_num);
  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      for (int k = 0; k < thread_num; k++) {
        threads[(i + j * device_num) * thread_num + k] =
            std::thread(build_dynamic_mf_func, i, j, k);
      }
Y
yaoxuefeng 已提交
791
    }
Z
zmxdream 已提交
792 793 794 795 796
  }
  for (std::thread& t : threads) {
    t.join();
  }
  threads.clear();
Y
yaoxuefeng 已提交
797 798 799
  threads.resize(device_num * multi_mf_dim_);
  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
Z
zmxdream 已提交
800
      threads[i + j * device_num] = std::thread(build_dymf_hbm_pool, i, j);
Y
yaoxuefeng 已提交
801
    }
Y
yaoxuefeng 已提交
802 803 804
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
805
  }
Z
zmxdream 已提交
806 807
  threads.clear();

T
Thunderbrook 已提交
808
  timeline.Pause();
809
  VLOG(0) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
810
          << " s.";
811 812 813 814 815 816 817 818 819 820 821 822 823 824
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }
Y
yaoxuefeng 已提交
825
  InitSlotInfo();
826 827
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
Y
yaoxuefeng 已提交
828

829
  data_ready_channel_->Put(gpu_task);
Y
yaoxuefeng 已提交
830

831 832 833 834 835
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
836
  VLOG(3) << "start build CPU ps thread.";
837
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
838 839
}

840 841
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
842 843 844 845 846
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
847
    VLOG(3) << "thread PreBuildTask start.";
848 849 850
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
851
    PreBuildTask(gpu_task);
852
    timer.Pause();
853
    VLOG(0) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
T
Thunderbrook 已提交
854
            << " s";
855 856 857 858 859
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

860 861 862 863 864 865 866 867 868 869
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
870
  }
871

872
  VLOG(0) << "BuildPull start.";
873 874 875 876 877
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
878
  VLOG(0) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
879 880 881
          << "s";

  current_task_ = gpu_task;
882 883 884 885 886 887 888 889 890
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
891 892

  build_task();
893
  timer.Pause();
894 895 896 897 898 899

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

T
Thunderbrook 已提交
900
  VLOG(0) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
901 902 903 904 905 906 907 908 909 910 911
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
Y
yaoxuefeng 已提交
912

913
  for (size_t i = 0; i < heter_devices_.size(); i++) {
Y
yaoxuefeng 已提交
914 915 916 917 918
    for (int j = 0; j < multi_mf_dim_; j++) {
      keysize_max =
          std::max(keysize_max, current_task_->device_dim_keys_[i][j].size());
    }
  }
919
  int thread_num = 8;
D
danleifeng 已提交
920 921 922 923
  auto accessor_wrapper_ptr =
      GlobalAccessorTransfor::GetInstance().GetAccessorWrapper();
  auto dump_pool_to_cpu_func = [this, thread_num, &accessor_wrapper_ptr](
                                   int i, int j, int z) {
Y
yaoxuefeng 已提交
924 925 926 927
    PADDLE_ENFORCE_GPU_SUCCESS(cudaSetDevice(this->resource_->dev_id(i)));
    auto& hbm_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
    auto& device_keys = this->current_task_->device_dim_keys_[i][j];
    size_t len = device_keys.size();
928 929 930 931 932 933 934 935 936 937 938 939 940 941
    // ====== multi-thread process feasign================
    int len_per_thread = len / thread_num;
    int remain = len % thread_num;
    int left = -1, right = -1;
    int real_len = len_per_thread;
    if (z < remain) real_len++;
    if (z < remain) {
      left = z * (len_per_thread + 1);
      right = left + real_len;
    } else {
      left = remain * (len_per_thread + 1) + (z - remain) * len_per_thread;
      right = left + real_len;
    }
    // ============ multi-thread process feasign============
Y
yaoxuefeng 已提交
942 943
    int mf_dim = this->index_dim_vec_[j];
    size_t feature_value_size =
D
danleifeng 已提交
944 945 946 947
        accessor_wrapper_ptr->GetFeatureValueSize(mf_dim);
    VLOG(0) << "dump pool to cpu table: " << i << "with mf dim: " << mf_dim
            << " key_len :" << len
            << " feature_value_size:" << feature_value_size;
948 949
    char* test_build_values = (char*)malloc(feature_value_size * real_len);
    uint64_t offset = left * feature_value_size;
950 951 952 953
    cudaMemcpy(test_build_values,
               hbm_pool->mem() + offset,
               feature_value_size * real_len,
               cudaMemcpyDeviceToHost);
Y
yaoxuefeng 已提交
954 955
    CHECK(len == hbm_pool->capacity());
    uint64_t unuse_key = std::numeric_limits<uint64_t>::max();
956
    for (int i = left; i < right; ++i) {
Y
yaoxuefeng 已提交
957 958 959
      if (device_keys[i] == unuse_key) {
        continue;
      }
960
      size_t local_offset = (i - left) * feature_value_size;
D
danleifeng 已提交
961
      float* gpu_val = (float*)(test_build_values + local_offset);
962
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
      auto* downpour_value =
          (paddle::ps::DownpourFixedFeatureValue*)(gpu_val->cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val->mf_size > 0 && downpour_value_size == 8) {
        downpour_value->resize(gpu_val->mf_dim + 1 + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  delta_score_index()] = gpu_val->delta_score;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  show_index()] = gpu_val->show;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  click_index()] = gpu_val->clk;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_w_index()] = gpu_val->lr;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_g2sum_index()] = gpu_val->lr_g2sum;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  slot_index()] = gpu_val->slot;
      if (gpu_val->mf_size > 0) {
        for (int x = 0; x < gpu_val->mf_dim + 1; x++) {
          cpu_val[x + 8] = gpu_val->mf[x];
        }
      }
D
danleifeng 已提交
987 988 989 990
#endif
#ifdef PADDLE_WITH_PSCORE
      accessor_wrapper_ptr->DumpFill(gpu_val, cpu_table_accessor_, mf_dim);
#endif
Y
yaoxuefeng 已提交
991 992 993 994 995 996
    }
    free(test_build_values);
  };
  if (multi_mf_dim_) {
    VLOG(0) << "psgpu wrapper dump pool: multi_mf_dim_: " << multi_mf_dim_;
    size_t device_num = heter_devices_.size();
997
    std::vector<std::thread> threads(device_num * multi_mf_dim_ * thread_num);
Y
yaoxuefeng 已提交
998 999
    for (size_t i = 0; i < device_num; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
1000 1001 1002 1003
        for (int k = 0; k < thread_num; k++) {
          threads[(i + j * device_num) * thread_num + k] =
              std::thread(dump_pool_to_cpu_func, i, j, k);
        }
Y
yaoxuefeng 已提交
1004 1005 1006 1007 1008
      }
    }
    for (std::thread& t : threads) {
      t.join();
    }
1009 1010 1011 1012
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
1013

Y
yaoxuefeng 已提交
1014 1015 1016
  for (size_t i = 0; i < hbm_pools_.size(); i++) {
    delete hbm_pools_[i];
  }
1017
  gpu_task_pool_.Push(current_task_);
1018 1019 1020
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
Y
yaoxuefeng 已提交
1021
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
1022 1023 1024 1025 1026 1027 1028 1029
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
D
danleifeng 已提交
1030 1031
  VLOG(0) << "Warning:: recommand use pull_gpups_sparse op instead. This "
             "PullSparse is not used.";
Y
yaoxuefeng 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const std::vector<int>& slot_dim,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  size_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  size_t feature_value_size = 0;

D
danleifeng 已提交
1049 1050 1051 1052 1053
  auto accessor_wrapper_ptr =
      GlobalAccessorTransfor::GetInstance().GetAccessorWrapper();
  feature_value_size = accessor_wrapper_ptr->GetFeatureValueSize(max_mf_dim_);
  VLOG(3) << "PullSparse max_dim:" << max_mf_dim_
          << " feature_value_size:" << feature_value_size;
Y
yaoxuefeng 已提交
1054 1055 1056 1057

#ifdef PADDLE_WITH_CUDA
  VLOG(3) << "Begine Gpu Ps PullSparse";
  auto buf = memory::Alloc(place, total_length * feature_value_size);
D
danleifeng 已提交
1058
  float* total_values_gpu = reinterpret_cast<float*>(buf->ptr());
Y
yaoxuefeng 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
#endif
#ifdef PADDLE_WITH_XPU_KP
  VLOG(3) << "Begine Xpu Ps PullSparse";
  FeatureValue* total_values_gpu = nullptr;
  xpu_malloc(reinterpret_cast<void**>(&total_values_gpu),
             total_length * feature_value_size);
#endif
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(total_keys_tensor.mutable_data<int64_t>(
            {int64_t(total_length), 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
1088 1089 1090 1091 1092 1093 1094
    cudaMemcpy(gpu_keys,
               keys.data(),
               keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len,
               slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t),
Y
yaoxuefeng 已提交
1095 1096 1097 1098
               cudaMemcpyHostToDevice);

    auto buf_dim = memory::Alloc(place, slot_dim.size() * sizeof(int));
    int* gpu_dim = reinterpret_cast<int*>(buf_dim->ptr());
1099 1100 1101
    cudaMemcpy(gpu_dim,
               slot_dim.data(),
               slot_dim.size() * sizeof(int),
Y
yaoxuefeng 已提交
1102 1103
               cudaMemcpyHostToDevice);

1104 1105 1106 1107
    this->CopyKeys(place,
                   gpu_keys,
                   total_keys,
                   gpu_len,
Y
yaoxuefeng 已提交
1108 1109 1110 1111 1112 1113
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;

    pull_gpups_timer.Start();
1114 1115
    HeterPs_->pull_sparse(
        devid_2_index, total_keys, total_values_gpu, total_length);
Y
yaoxuefeng 已提交
1116 1117 1118 1119

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";

D
danleifeng 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    accessor_wrapper_ptr->CopyForPull(place,
                                      gpu_keys,
                                      values,
                                      total_values_gpu,
                                      gpu_len,
                                      static_cast<int>(slot_lengths.size()),
                                      hidden_size,
                                      total_length,
                                      gpu_dim,
                                      val_type_size_);
Y
yaoxuefeng 已提交
1130 1131 1132

    pull_gpups_timer.Pause();

F
Fan Zhang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_KP
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }

F
Fan Zhang 已提交
1148 1149 1150 1151 1152
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** xpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* xpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
1153 1154
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_keys,
                                          keys.data(),
F
Fan Zhang 已提交
1155 1156
                                          keys.size() * sizeof(uint64_t*),
                                          XPU_HOST_TO_DEVICE));
1157 1158
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_len,
                                          slot_lengths_lod.data(),
F
Fan Zhang 已提交
1159 1160 1161
                                          slot_lengths.size() * sizeof(int64_t),
                                          XPU_HOST_TO_DEVICE));

1162 1163 1164 1165
    this->CopyKeys(place,
                   xpu_keys,
                   total_keys,
                   xpu_len,
F
Fan Zhang 已提交
1166 1167 1168 1169 1170
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
1171 1172 1173
    HeterPs_->pull_sparse(devid_2_index,
                          total_keys,
                          total_values_gpu,
F
Fan Zhang 已提交
1174 1175 1176 1177 1178
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
D
danleifeng 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187
    accessor_wrapper_ptr->CopyForPull(place,
                                      xpu_keys,
                                      values,
                                      total_values_gpu,
                                      xpu_len,
                                      static_cast<int>(slot_lengths.size()),
                                      hidden_size,
                                      total_length,
                                      val_type_size_);
F
Fan Zhang 已提交
1188
#endif
T
Thunderbrook 已提交
1189 1190
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
F
Fan Zhang 已提交
1191
        "GpuPs/XpuPs: PullSparse Only Support CUDAPlace or XPUPlace Now."));
T
Thunderbrook 已提交
1192 1193
  }
  all_timer.Pause();
1194
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
1205 1206
                                  const int hidden_size,
                                  const int batch_size) {
T
Thunderbrook 已提交
1207 1208 1209 1210 1211
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
1212
  // #ifdef PADDLE_WITH_CUDA
F
Fan Zhang 已提交
1213
  VLOG(3) << "Begin GPUPS PushSparseGrad";
D
danleifeng 已提交
1214 1215 1216
  auto accessor_wrapper_ptr =
      GlobalAccessorTransfor::GetInstance().GetAccessorWrapper();
  size_t grad_value_size = accessor_wrapper_ptr->GetPushValueSize(max_mf_dim_);
Y
yaoxuefeng 已提交
1217
  auto buf = memory::Alloc(place, total_length * grad_value_size);
D
danleifeng 已提交
1218 1219 1220
  VLOG(3) << "Push Sparse Max mf dimention: " << max_mf_dim_
          << "grad_value_size:" << grad_value_size;
  float* total_grad_values_gpu = reinterpret_cast<float*>(buf->ptr());
T
Thunderbrook 已提交
1221 1222 1223 1224
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
1225
#ifdef PADDLE_WITH_CUDA
1226
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
1227 1228 1229 1230 1231
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
D
danleifeng 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
    accessor_wrapper_ptr->CopyForPush(place,
                                      grad_values,
                                      total_grad_values_gpu,
                                      slot_lengths,
                                      total_length,
                                      batch_size,
                                      grad_value_size,
                                      slot_vector_,
                                      slot_mf_dim_vector_);
T
Thunderbrook 已提交
1241 1242 1243 1244

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
1245 1246 1247
    HeterPs_->push_sparse(devid_2_index,
                          total_keys,
                          total_grad_values_gpu,
T
Thunderbrook 已提交
1248 1249
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1250
#endif
F
Fan Zhang 已提交
1251
  } else if (platform::is_xpu_place(place)) {
F
Fan Zhang 已提交
1252
#ifdef PADDLE_WITH_XPU_KP
F
Fan Zhang 已提交
1253 1254 1255 1256 1257 1258
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to xpups struct";
D
danleifeng 已提交
1259 1260 1261 1262 1263 1264 1265 1266
    accessor_wrapper_ptr->CopyForPush(place,
                                      grad_values,
                                      total_grad_values_gpu,
                                      slot_lengths,
                                      hidden_size,
                                      total_length,
                                      batch_size,
                                      slot_vector_);
F
Fan Zhang 已提交
1267 1268 1269 1270

    VLOG(3) << "Begin call PushSparseXPU in XPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
1271 1272 1273
    HeterPs_->push_sparse(devid_2_index,
                          total_keys,
                          total_grad_values_gpu,
F
Fan Zhang 已提交
1274 1275
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1276
#endif
T
Thunderbrook 已提交
1277 1278 1279 1280 1281
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
Y
yaoxuefeng 已提交
1282 1283
  time_3 += all_timer.ElapsedSec();
  time_4 += push_gpups_timer.ElapsedSec();
1284
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1285 1286 1287 1288 1289 1290 1291 1292
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif